GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E COORDENAÇÃO

ADEQUAÇÃO DO PROJETO DE IRRIGAÇÃO TUCUNDUBA II

VOLUME IV
MEMÓRIA DE CÁLCULO

VBA

FORTALEZA-CE

GOVERNO DO ESTADO DO CEARÁ

SECRETARIA DOS RECURSOS HÍDRICOS - SRH

ADEQUAÇÃO DO PROJETO DE IRRIGAÇÃO TUCUNDUBA II

VOLUME IV MEMÓRIAS DE CÁLCULO

Projeto N° O(x) Scan () index ()
Projeto N° O(x) ()
Volume ()
Qtd A4 (Qtd A3 ()
Qtd A2 (Qtd A1 ()
Qtd A0 ()
Qtd A0 ()

APRESENTAÇÃO

A adequação do Projeto Executivo de Irrigação Tucunduba II, localizado no município de Senador Sá, no Estado do Ceará, foi elaborado pela VBA CONSULTORES - Engenharia de Sistemas Hídricos, de acordo com contrato firmado com a Secretaria dos Recursos Hídricos do Ceará - SRH.

O projeto prevê a ocupação de uma superfície irrigada de 382 ha, distribuída em duas áreas: a primeira formada por 225 ha irrigados por três Pivôs Centrais de 75 ha cada e a segunda com 157 ha irrigados por sistemas de irrigação localizada.

A área distribui-se ao longo de uma pequena chapada, constituída por Latossolos e Podzólicos, situada 5,0 km a jusante do Açude Tucunduba e a 2,0 km à margem esquerda do rio de mesmo nome.

Compõem o Projeto Tucunduba II, os seguintes volumes:

VOLUME I - Relatório Geral

VOLUME II - Quantitativos

VOLUME III - Orçamento

VOLUME IV - Memórias de Cálculo

VOLUME V - Plantas

O presente documento constitui-se do Volume IV de Memórias de Cálculo e contém capítulos a seguir discriminados.

- CAPÍTULO 1 Cálculo das vazões e dimensionamento hidráulico do sistema de irrigação localizada.
- CAPÍTULO 2 Dimensionamento das adutoras da área de irrigação Localizada.
- CAPÍTULO 3 Esquema de montagem das adutoras da área de irrigação localizada.
- CAPÍTULO 4 Dimensionamento e esquema de montagem da adutora principal e das adutoras dos pivôs.
- CAPÍTULO 5 Cálculo hidráulico da EB principal, das EB's dos pivôs e EB's da irrigação localizada.
- CAPÍTULO 6 Dimensionamento do reservatório de compensação e controle.
- CAPÍTULO 7 Tipo de valas em função dos diâmetros das tubulações.

ÍNDICE

INDICE

	ra ₍	Jus
APRESENTA	ÇÃO	
CAPÍTULO 1	- CÁLCULO DAS VAZÕES E DIMENSIONAMENTO HIDRÁULICO DO SISTEMA DE IRRIGAÇÃO LOCALIZADA	j
CAPÍTULO 2	- DIMENSIONAMENTO DAS ADUTORAS DA ÁREA DE IRRIGAÇÃO LOCALIZADA	4
CAPÍTULO 3	- ESQUEMA DE MONTAGEM DAS ADUTORAS DA ÁREA DE IRRIGAÇÃO LOCALIZADA	7
CAPÍTULO 4	DIMENSIONAMENTO E ESQUEMA DE MONTAGEM DA ADUTORA PRINCIPAL E DAS ADUTORAS DE PRESSURIZAÇÃO DOS PIVÔS	23
CAPÍTULO 5	- CÁLCULO HIDRÁULICO DA EB PRINCIPAL, DAS EB'S DOS PIVÔS E EB'S DA IRRIGAÇÃO LOCALIZADA	3]
CAPÍTULO 6	- DIMENSIONAMENTO DO RESERVATÓRIO DE COMPENSAÇÃO E CONTROLE	4 (
CAPÍTULO 7	TIPO DE VALAS EM FUNÇÃO DOS DIÂMETROS DAS TUBULAÇÕES	5(

CAPÍTULO 1 - CÁLCULO DAS VAZÕES E DIMENSIONAMENTO DO SISTEMA DE IRRIGAÇÃO LOCALIZADA

<u> </u>			COMBULIUNES 2
	CUNDUBA IF		FCLHA 1/2
ASSUNTO LR	RIGAÇÃO LOCALIZ	ADA-DIMESIONA	mend indraunce
OBRA / DESERNO	FEITOPaulin	CONFERIDO	DATA 1059
1-	DADOS BÁSICOS	S USADOS P	ARA DIMEN-
	SIONAMENTO	DO SISTEM	A DE IRRI-
	GAGAO WCALI		
1.1-	AREA-4,0ha ->	DECISÃO DA S	S. R #,
12-	CULTURA -> FRU	TICULTURA (D	(VERSOS).
	Para eleito de	dimensiona	mento hi-
drá	Para efeito de julios a VBA ut rovado recentero	thizon dador.	e cultinas
apr	rouadn recenter	ente para	o projeto
('S Ã	FO BRAS", elabo	wds paw	esta SECRE-
+0	9e14	,	
	CULTURA	VAZAO ESP	ecifica (IIs/ha)
	MANGA	0,47	
-	ACEROLA	0,56	
- ~	ПVР	PFP	
	mevão	0,93,	
- Pa	u o projeto	en estudo	con lote
01	revisto de 400h	v, fez-se	a seguinte
0	listabuiço de o médio ponderado cifica para se	ulturos, util	igando a
	midio ponderade	n culturo x	Vazoo espe
· _	cifica para re	determinar a	i vagas mo-
-	div do lo-	te:	-

1RRIGAÇÃO WCAUZADA-DIMENSIONAMENTO HIDRADUC	MEMORIA DE	CALCULO	ARY	CUNSULIURES 3
IRRIGAÇÃO WCAMZADA-DIMENSIONAMENTO HIDEADULO PETTO COMPENDO DADA 105495 CULTURA VAZÃO ES-AREA ADOTADA PECIFICALIJARA POR CULTURA MANGA DILA 100 ACEROLA DISG 150 UNA DIA9 1.00 MEIÃO DI93 DISO MEOI O PONDE-0,65 1/5/ha. RADA DA VAZÃO Par maior regunarça utelizourse a varyad sopicijus médio de Ot5 1/5/ha. Par pator-se deixar uma pressas de 25mca na entrada do lote que ser rufunte para standar à miamido de do nistemo de iniquist localizoda das do lote pre-determinado.	PROJETO TICHNOHI	3 A II		S/S ANDA
CULTURA VAZÃO ES- PREA ADOTADA MANGA 0.47 100 ACEROLA 0.56 150 UNA 0.79 1.00 MELÃO 0.93 0.50 MEDIA PONDE-0,65 PS/ha. RADA DA VAZÃO Compensor regularça utilizanse a varya spricji w modio de, 075 PS/ha de 4,00ha. Profetor-se deixar uma pressas de 25m ca na entoda do lote que ser mujuanto de invigiços localizada das do lote pre-determinado.			DIMEN SIDNAME	NTO HORADUCA
CHLTHRA VAZÃO ES- AREA ADOTADA PECIFICANIJARA POR CULTURA MANGA 0.47 100 ACEROLA 0.56 150 UNA 0.79 1.00 MELÃO 0.93 0.50 MEOIN PONDE- 0,65 1/5/ha. RADA DA VAZÃO de, 0.75 1/5/ha Par maior regurança utelizou-se a vargos specificor médio de, 0.75 1/5/ho o que corresponde a 3.00 1/5 pro lote de 4,00 ha. Profetor-se deixar uma pressão de 25 m.c.a na entoda do lote que ser má cunte para atenda à necessidade de sistemo de invigiços localizada das do lote pre-determinado.	OBRA / DESENHO			
MANGA 0,47 100 ACEROLA 0,56 150 UNA 0,79 1,00 MELAO 0,93 0,50 MEOIN PONDE-0,65 PS/ha. RADA DA VAZAO Par maior regurança utilizar-se a varyor specific modio de, 0,51 PS/ha o que consoprande a 3,00 PS pr lote de 4,00 ha. Profetor-se deixar uma pressas de 25 m ca na entoda do lote que ser moj cente para atendar a neumido de do sistemo de invigios localizada das do lote pre-determinado.			_ <u></u>	
MANGA 0,47 100 ACEROLA 0,56 150 UNA 0,79 1,00 MELAO 0,93 0,50 MEOIN PONDE-0,65 PS/ha. RADA DA VAZAO Par maior regurança utilizar-se a varyor specific modio de, 0,51 PS/ha o que consoprande a 3,00 PS pr lote de 4,00 ha. Profetor-se deixar uma pressas de 25 m ca na entoda do lote que ser moj cente para atendar a neumido de do sistemo de invigios localizada das do lote pre-determinado.	-			4.2
MANGA 0.47 100 ACEROLA 0.56 150 LINA 0.79 1.00 MELAO 0.93 0.50 MEOIN PONDE-0,65 PS/ha. RADA DA VAZAO Par maior segurança utelezou-se a varyoù sperigior modio de, 0.75 PS/ho o que convoponde a 3,00 PS pr lote de 4,00 ha. Profetor-se deixar uma pressad de 25 m ca na entoda do lote que ser my cente para atondar à neumidade do sistemo de inviguos localizada das do lote pre-determinado.	CULTHI	7 / +	ם ממח כ	. и у от <i>н и</i> н . и L + и г. А
ACEROLA 0.56 LIVA 0.79 MELÃO 0.93 MEDIA PONDE-0,65 PS/ha. RADA DA VAZÃO Para maior regunarça utelizou-se a va- you specificor modio de, 0.75 PS/ha o que corresponde a 3,00 PS pr lote de 4,00 ha. Profetou-se deixar uma pressas de 25 m ca na entoda do lote que ser mod centro de invegiços localizada das do lote pre-determinado.		PECIFICE	MISKA (hal
MELAO 0,93 0,50 MELAO 0,93 0,50 MEDIA PONDE-0,65 P/s/ha. RADA DA VAZÃO Para maior regunarga utelezou-se a vargos specifico modio de, 0,75 P/s/ho o que corresponde a 3,00 P/s pro lote de 4,00 ha. Profetor-se deixar uma pressas de 25 m ca na entoda do lote que ser me fuente para atendar à necessidade de sistemo de invegigo localizada das do lote pre-determinado.	MANGA	0,47	10	0
MEIAO 0,93 0,50 MEOIN PONDE-0,65 PS/ha. RADA DA VAZÃO Par maior regurança utelizou-se a varyor specifico módio de, 0,55 l/s/hor o que converpende a 3,00 l/s pro lote de 4,00ha. Profetor-se deixan uma pressas de 25 m ca na entrada do lote que ser moj cente para atendar a necesido de de sistemo de invigujos localizada das do lote pre-determinado.	. ACEROI	-A 0,56	1, 5	0
RÉDIA PONDE- 0,65 e/s/ha. Par maior regurança utelezou-se a va- you spécific médio de, 0,55 e/s/hor o que converponde a 3,00 e/s per lote de 4,00 ha. Profetou-se deixan uma pressan de 25 m ca ma entroda do lote que ser mé cente para atendar a necessido de do sistemo de inscriços localizada das de lote pre-determinado.	ΔVĀ	0.79	4,0	0
Para maior requestres utilizar-se a var- you specifico modio de, 0,75 l/4 hor o que converponde a 3,00 l/s pro lote de 4,00 ha. Profetor-se deixar uma pressas de 25 m ca na entoda do lote que ser mé cente para atendar a necessido de do sistemo de incurgos localizada das do lote pre-determinado.	_ MELAO	0,93	0, 2	070
por specific médio de, 0, 15 ll sho o que converponde a 3,00 lls per lote de 4,00 ha. Profetor-se deixar uma pressad de 25 m ca na entroda do lote que ser su fuente para atendar à necessido de do sistemo de insquest localizada das do lote pre-determinado.				u-se a va-
sistemo de inscujor localizada das do lote pre-determinado.	broadenven	in modio le a 3,00 f/s	de, of selfh	de 4,00ha.
sistemo de inscujor localizada das do lote pre-determinado.	Projetos 25 m c	1-se deixar a na entro	da do lo.	essas de te que sere
sistemo de inscuçor localizada das de lote pre-determinado.	July wer	to pare at	inder a new	essidade do
do lote pre-determinado.				
		+ 1		
	رمار على	le pre-deter	mva ao.	
		-		
	- 			
a Place de				
	N. Prime. As			

CAPÍTULO 2 - DIMENSIONAMENTO DAS ÁDUTORAS DAS ÁREAS DE IRRIGAÇÃO LOCALIZADA

ASSUNTO DIMENSIONAMENTO OATA 10595
SETOR 1-1-1-1-2 1.3

TUCUNDUBA II

		1 200											
ADT	ADT DERV	Иδ	COTA (m)	O (び*)	(m)	(m m)	V m/s	/m/m)	Δh - (m)	Hf (m)	P NECESS.	H (m)	P (m)
		_									_	Ĺ	
							}			}			
		0	<i>{{}3}</i> 0	12000	1.12.00	300	150	20012		25		43,11	1363
		1	31,32	12000	128,00	300	1'28	6.004		2,56 0,79		37:43	123.7
	11	2=0	1218	99,07	442,00	300	130	O.OND		1,90	35,78	35,78	174,76
	15	3 = 0	92.45	57.00	226,00	025	106	0.0036		0.81	33,61	33,61	126.75
13,	118	4=0	93,25	4200	226,00	220	850	2005/		0,47	32,00	32,00	125,25
	14	5=0	9330	33.00	55600	200	0.93	00033			31,48	31.48	124,78
-1	15	6=0	93.08	1200		100	173	00310		0.84	30,86.	30,86	123,94
		7	92,70		16.00	100	131	002		<u>0</u> 51	25,00	30,73	123,43
1 -	i		99.00	9,00	137,00		1,29	00180		247	25.00	30.96	120,96
10	/	8	89,55	6.00	27,90	75	154	00367		299	25.00	30,42	119,97
A		10	37.80	3.00	67,00	75	277	0010		0.67		31,50	119.30
		[]	8495	3,00	114,00	20	174	00779		9,35	2500	25,00	109,95
					7 02 2								1
					2022		<u> </u>	├					
					0.5		 -						
1	į '	5=0	92.18	3 1 60		, (0.00	102			1		3578	127.96
1		1	92.18	21.00	186,00	150,00	102	0.000		1,12		34,04	12684
		5	93,50	18.00	18500	150.00	0,64	0.00.		0.82		32.52	126,02
	,	3	93.75	1 200	1 83.00	1 20.00	0,73	0.W34		0.59		31.68	125,43
-	Ť	4	2975	9,00	3 70.00	(00,00)	1,29	00304		6,73 2,72		28,95	118.70
		5	84.00	6,00	3 2000	100.00	0,86	0032		2,72	` 	31,98	115,98
}	0	6	81.40	3,00	13000		0.77	02/00		1,30		33.28	114.68
}	Æ	7	78.78	3,00	1300	20:00	1.74	1037		10,13	-	25,77	104.55
					-1-1						·	_ 	
1 _					1501					[
						~							
		0=3	9245	9.00	107.00	160	011	-012		<u>, </u>		33.61	126,06
	N	1	9447	9.00	187,00	150	044	CIMO		0,24		31,35	125,82
}	~	2	95.89	6.00	182.00	100	980	3002		1.85 72.1		58'38 31'32	124,27
		3	96.83	3.00	18200	73	0.7.7	0010	{	1, & C		25,62	122,45
	0				551					{			
	A				150					[
			 							[
	M	0:4	93,25	9.00	187.00	150	اللم	0,0013		024		32.00	125,25
		1	95.11	6,00	195'00	100	0,86	2000				29,90	125,01
1/		2	95,11	3,00	155'00	75	0,77	0//0		182		27.58	123,46
	0	3	97,12	3,00	4 5 = (00	73	Y/7#	m.u		1.0 6		24,52	123,46
	A				Į jį								
1	<u> </u>												
]									[
									-t]
	-		<u> </u>						-+				
	j		 										
	} .	ļ	ļ					 					
			}		-								
<u></u>	<u> </u>	L .	<u>.</u>	- 1		. !	- ‡	1	_ {	[·	!

	_	_	TUC	NON	BA I	Į	ASSUN SETOR ADUTO	-	1			ento Sels	DATA	10995 2/2 6
1	ADT	APT PERV	Νū	COTA (m)	(1/s)	(m)	D (mm)	v m/s	(س/س) ر	Δh - (m)	Hf (m)	P NECESS.	H (m)	P (m)
	\checkmark	A DT 1.4	0 = 5 1 2 3	93,30 96,13 97,20 96,19	9.00 6.00 3.00	18700 18200 18200	150 100 75	0.44 0.86 0.77	70/0 7008€ 2008		0 24 1,55 1,82		3148 28,41 25,79 24,98	124,78 124,54 122,99 121,17
-	V	ADT 16	0=6 L Z 3 4	9308 94,65 96,00 96,98 97,94 97,74	18.00 15.00 12.00 9.00 3.00	/27,00 60,00 74,00 103,00 172,00 551	100 120 120 120 120	0,87 073 044	6.60)2 6.		0,15 0,19 0,13 0,13 0,43		3086 29.14 27.60 26.45 25.36 25.12	123,94 123,79 123,60 123,43 123,30 122,87
		ADT 15 C	0=4 1 2 3 4 4 4 6 7=0	93.25 90.55 87.20 86.75 86.00 83.05 81.40 80.35 77.33 77.28	3 0,00 24,00 2 1,00 1 8,00 1 8,00 1 2,00 9,00 6,00	1 81.00 1 81.00 20.00 3 2.00 1 3 0.00 74.00 46.00 1 84.00 1 12.00	100	1.02 1.02 1.87 2.57 2.14 1.71	185 185 196 196 196 196 196 196 196 196 196 196		2,14 1,39 0,01 0,14 8,92 3,57 1,45 3,29 0,44		32.00 32.56 34.52 34.96 35.57 29.60 27.68 27.28 26.96 26.62	125,25 123,11 121,72 121,71 121,57 112,65 109,08 107,63 104,34 103,90
	0	A DT 1.5.1		7738 7935	3,00 Ø 300	CO.) S Z Z (,000	160	0.43	્રજૂર		153	25,00	26,96 24,46	104,34 103,81
					250 200 150 100 75 56	452 353 1768 222 782 244 298								

CAPÍTULO 3 - ESQUEMA DE MONTAGEM DAS ADUTORAS DE IRRIGAÇÃO LOCALIZADA

ا معسن	Air J	PROJETO	TIXUNISUBA II	ASSUNTO - Sque mo de Montagim DATA 105/95 SETOR 8 ADUTORA 40T-7L FOLHA: 01/15
	LINHA	Nº DO PONTO	ESQUEMA	DESCRIÇÃO
	0-1		a co	1) 413,00m TUBO IRRIGIL-LE PN 60, PB, JE NN 300mm
		1	Q (m)	D CUZYA 22°30' VINILIFER DEFOFO P/160, COM BOLSAS DN 300mm 2) TOCO IPRIGA-LF, PN 60. C/ PONTAS DN 300mm L=0,40m. (1)
	1-2	_	9 co	DIJ 300mm.
		S=0	AM 1-1 -3 -3 -3	1) CURVA 11°15' VINILFER DEFO FO BB JE DN 300mni! 2) TOCO PP DN 300mm; L= 0,40m (2) 3) TE FOFO BBB JE DN 300x (50mm (1)) 1) TOCO PP DN 150mm; J= 0,30m (1)
	2-Za		D	DZZJOOMTUBO IRKIGA-LF PN 60 PB, JE UN ZOOMM.
		Za	VT; ② → ①	1 TE 90° RED. DE FOFO BBF DN 300x100mm [1] 2 TO CO PP ND 300mm ; L= 0,40m (1) 1 VT Tipo 2
	2a-2		NW. C &	108,00 m TUBO PUC DEFOFO, JE PNGO \$ 300 mm
		26.	DL1	1 TE 90° DEFOFO BBF DN 300×100mm (1) 1 DL Hipo I 000015

Hiji Bunus	PR0JE70 1	пспио <u>пва</u> <u>т</u>	ASSUNTO Squerre de Montagem DATA. 10595 SETOR. ADUTORA LL FOLHA 2/15
LINHA	и: DO РОТИО	ESQUEMA	DESCRIÇÃO
26-3			113,00m TUBO PVC DEFOFO, JE PN 60 DN 300 mm
	3=0	ADT 1.2 3 (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	DI CRUZE +A DEFORD, PY 60 C/BDLAS DN 300mmx 150 UN M 2) TOW IRRIGA-LF, PN 60 C/MONTAS DN 300mm; L=0,40 UM 3) REDUCAD VINILTER DEFORD, PN 60, MONTA E LOUSA DN 300x250mm. (1) 2) TOW IRRIGA-LF, PN 60 C/POUTAS DN 150mm. L=0,30 mm. 3) Rd DEFOROXPBA PB JE DN 150x 100mm/1 6) ADAP. LF P/ BOLSA PDA DN 100 UM [1] 2) TOW PP DN 100 UM; J=0,25 UM 8) RD LF BB SOLO. DN 100 X 50 UM 1) 4) 4) 4) 4) 4) 4) 4) 4) 4)
3-4		- AND - LEV	226m TUBO IRRIGA LF PN 60 JE DN 250mm
		_	000016

And	ркојето 🗂	ACTOORB & II	ASSUNTO Equema de Mantagen DATA: 105/95 SETOR J. L FOLHA: 3/15
LINHA	Nº DO PONTO	ESQUEMA	DESCRIÇÃO
h-5	4 ADA	2 T	D CRUZETA DEFOFO BBBB JE DN 250mm (1) DRD DEFOFO PB JE DN 250x150mm (2) TOCO PP DN 250mm; L-0,40m (2) TOCO PP DN 150mm; L-0,40m (2) CRUZETA DEFOFOXPBA CIBOLSAS DN 150 X 20mm (1) CO ADAD. LF P/ GOLSA PBA DN 50mm (2) D ADAP. PUSAXROKA MACHO LF DN 50mm (2) TOCO PP DN 150mm; P= 1,0 m TOCO PP DN 150mm; P= 1,0 m TIPO 1 D 225,00m TUBO IRRIGA-LF PN 60, PB, JE DN 250mm.
	5	ANT TO COMPANY OF THE PART OF	DTÉ 90° DE REDUÇAJ VINILFEZ DEFOFO, JE, PN60 C/ BOLSAS DN Z50 mm. (1) (2) REDUÇÃO VINILFEL DEFOFO, PN60, PONTA E BOLSA DN Z50X ZOOMM. (3) TOW IRRIGA-LF PN60 C/ PONTAS DN ZOOMM L= 0,40m. (1) P) REDUÇÃO PONTA E ROLSA JE FOFO DN 250 X / 50 mm (1) 5) TOW HRIGA-LF PN60 C/ PONTAS DN 150 mm L= 0,30 m. (1)
5-6	-	O co	1) 226,00m TUBO IRRIGA-LF, PN 60, PB, JE DN 200mm.
	6		1) TOW PP ON ZOOMN: L=0,400M [1] 2) TE DEFORD 8BB IJE, DN ZOOMM [1] 3) RD DEFORD XPBA PB DN ZOOX [DOWN[1] 4) ADAP. LF P/ ROLSA PBA DN 100mm; L= 1.00mm (N) 5) TOW PP LF PN80, DN 100mm; L= 1.00mm (N) 6) TOW PP B ZOOMM; L=1.00mm (N) 7) TE 90° RED. DEFORD BBF DN ZOOX JOHN (N) 8) TE PVC BBB SOLD DN 100 & SOMM (N) 9) TOW PP DN 100 mm; N=0,25mm (N) 1) ADAP P. USAX ROSCA MACKS DN SOMM (N) 1) IT TOWN (N) 1) THE POINT DOWN (N) 1) THE POINT POINT POINT POINT POINT (N) 1) THE POINT POIN

mare Aire	PROJETO TI	ICUNDUGA II	ASSUNTO Esquence de Mondagen DATA: 10595 SETOR: 1 L FOLHA 4/15
LINHA	Nº DO PONTO	ESQUEMA	DESCRIÇÃO
67		-muca	16,000 tubo 188164-LP, PB, JE PN 80 DN 100 MM
	7	3 1·34	TE PUC SOLD. BBB DN LOOX SOMM 3 +000 PP DN 100mm; 1:0,25m 3 ADAP. PLISAX ROSCA MACHO, DN 50mm
7-8			13900 MIRRIGA-LF PB, JE, DN 80, DU 100 MM
	8	J 3 3 5 1 3 3 5 1 3 3 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(1) TE PVC GOLD BBB DN 100K50mm (2) ADAP PLISAX EDICA MACHO, DU SOUM (3) TOCO PP LF DN 100MM; L=0,25M (4) Rd PVC LF GOLD BB, DN 100X75MM (5) TOCO PP LF DN 75MM; 1=0,25M. IT
8-9		- North	27,000 TUBO PUC LF PB, JE, PN 80, DN 750000
	9	2	D TE PVC SOLD. BBB, LF. DN 75x50mm D TOCO PP LF DN 75mm, L= 0,25mm D ADAR P.458x ROXA MOCHO, DN SMUMI JT
9-10	i	me	67.00 TUBO PVC LF PR. JE, PN80, DN 75 mm
	10	9 D D← →	D RD PVC LF SOLD BB, DV 75×50mm Thoso PP PUC LF DN 50mm; 1=0,25m
			000018

Harrie Aire	PROJETO T	UCUHOUBA II	ASSUNTO Equema de Montagan DATA. 105/95 SETOR. 12 5/15 ADUTORA 1 L FOLHA 5/15
LINHA	од •и рото	ESQUEMA	DESCRIÇÃO
10-11		- Mark or	11400m TUBO PUC LF, PB, JE, PND, DN SOMM
	13) (32 0 (5)	1) LUVA PUC BOLD DN SOMM 2 ADAP. P. 45A× EOSCH MACHO, DN SOMM
		9L2.	
		,	
		-	
-			
		<u> </u>	000019

ر م	A	PROJETO Z	IOUNINBA II	ASSUNTO - Exquence de Montagan DATA - 10595 SETOR: ADUTORA ADT - 1 1 L FOLHE 3 6/15
	LINHA	Nº DO PONTO	ESQUEMA	DESCRIÇÃO
	0-1		Production	1) 186,00m TUBO IBRIGA-LF PN 60, PB JE,
		1	3 3	(1) TÉ 90° DE REDUÇAS VINILFER DEFSTO X PBB CI BOLSAS, PN 60, DN 150X 50mm. (1) DN 50mm. (1) (3) ADAPTADOR PONTA LISAX ROSCA MACHO IRRIGA-1=, EN 30, DN 50mm (1) TOCO PP DN 150mm; L= 0,30m (1) IT
	1-2		130	182,00m TUBD IRFIGH-LF PN60 PB JE DN I SO MM OTÉ 90° DEFOROX PBA BBB DN 150 x 50mm-(1)
		2	7) (- 9 0	3 ADAP. LF P/ ROLSA FBA DN SOMM (A) 3 ADAPTLIK FÜNKLISHX KULA MACHO IRRIGA-LF PN 80: DN 50 mm. (A) 9 TOW IRRIGA-LF FN 60 C/PONTAS, DN 150 mm. (A) 1=0.30mm. (A)
	5-3		Q Car	0183,004 1080 188164-15, PN60, PB JE, DU 150 mm
		3.	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1) TE 90° RED, DEPOFO BBF DN JSOXSOMM (1) 2) TOCO PP DN JSOMM, J= J,00W = (2) 3) TE 90° RED. DEFOFOX PBA BBB DN JSOXSOMM (2) 9) RD. DEFOFO X PBA PB DN JSOX 100 mm (1) 5) ADAP. LF P/BOLSA PBA DN JOUMN (1) 6) TOCO PP DN JOOMM > I= 0,25 m (1) 7) ADAP. LF P/BOLSA PBA DN JOUMN (2) 8) ADAP. RIJAXROSCA MACHO DN JOUMN (2) VT TIPO 1 2T
			· .	000020

تنويه

	VIII.	PROJETO 7	UCUNDUBA II	ASSUNTO Equima de montagem DATA 105195 SETOR: ADUTORA COT-1.1 L. FOLHA 7/15.
	LINHA	Nº DO PONTO	ESQUEMA	DESCRIÇÃO
	3-4		Orca .	D379,00 mg 70BD 1821GL-LF, PNBD, PB JE, DN 100mm.
		4.	3 + 5 3 + 5 1 38	1) TE PYCLE BBB SOLD, DN 180x 50mm (1) 3) TOCO PP DN 100mm; 1= 0,25m (1) 3) ADAP PLISAXROSCA MACHO, DN 50mm (1) 1T
1	4-5		· Or Car	0320,000 TUBO IRAIGA-1F, PH30 FG JE, DN 100 mm
		5	(3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	TE C/ BOLLS SOLDATEC IRRISA-LF, DN BD DN 100x SOMM (1) DN 100x SOMM (1) DN 100x FORM DN 100x PONT LISA X ROSCA MACHO IRRIGALF LIJ BD, DN 50mm (1) D TOLD IRRIGAL-L= F1)BD, PP, DN 100mm; /= 0,25m (1) D RD BB SOLD. DN 100x 75mm (1) D TOCO PP DN 75mm; 1= 0,25m (1)
	5-6		NW C &	130,00m + 12 BO PVC LF PB, JE, PN80 DN 75mm
		6	○ ○ ○ ○	1) RD PVC BB 80LD. DN 75x50mm (1)
	6-7		- W-CO	130,00m TURO PUC LF, PB, JE, PNDO DN 50mm
-		7	1.40 p.13 6 1.40 p.13 p.13 6 1.40 p.13 p.13 p.13 p.13 p.13 p.13 p.13 p.13	1) TE PVC BBB SOLD DN SOMM (2) 1) TOCO PP DN SOMM; 1= 1:00 mm 3) TOCO PP DN SOMM; 1= 0:25 mm (1) (1) (1) (2) (3) (4) (4) (5) (4) (7) (7) (8) (8) (9) (9) (9) (1) (1) (1) (1) (1
			·	000021

_

VIII-	PROJETO Z	TICINIUBA II	ASSUNTO - Equence de ITIONTAGEM DATA 103/15 SETOR: 15 ADUTORA . ADT. 12' FOLHA 8/15
LINHA	Nº DO PONTO	ESQUEMA	DESCRIÇÃO
0-1		2 m	(1) 187,00 m TUED IRRIGH-LE PNGO, PB. JE, ONISOMM
	1.	1T	OTE90° DEFOROXPBA, BBB, JE, DN ISOXSOUND ORD DEFOROXPBA PB, DN ISOXIONIUM (O ADAR LF P/ BOLSA PBA DN 100 mm (O TOW PP DN 100 mm; 1= 0,25 m (O ADAP. LF P/ BOLSA PBA, DN SOMM (O ADAP. P. LISAX ROSCA MACHO, DN SOMM
7-5			182,00m TUBD IRKISC-LF DN 80, PB. JE, DN 100mm
	2	(4) 1.3 (2) 1.4 (-) -(-) -(-)	DREDUÇAD C/BOLGES SOLDAGEIS IRRIGA-LF, PN3), DN 100X75mm. (2) TOLD IRRIGA-LF PN3D C/POUTES, DN75mm, L=0/25mm 3) TÉ LE KEDUÇAS C/BOLGES SOLLÁRIS IRRIGA-LF PN3D, IN 75X50mm (4) ADAPTALOK PONTA LISAX ROCCL MACHO (RAISA-LF PN3D, ON JONES
2-3			1 18200m TUBO IRKIDA-LF PNBO, PBJE, DIJ 75mm
	3.	(-)-(-) (3) (1)	THE DE REUJCHO C/BO; SAS SOLDA/EI'S IRRIGA, LF, PN3D, DN 75X50MM. (2) ACCUTE, X. FONTZ JI: AX ROSCL MAC-D IRRIGH-LF PN3D, DN 50MM (3) TOCO IRRIGA-LF PN3D C/PONTAS, DN 75MM, L=QZ5mm (4) CAP SOLDAVEL IRRIGA-LF, PN3D, DN 75MM. (1)
			,
		-	
		<u> </u>	000022

Hitt.	PROJETO _	TKUNDURA II	ASSUNTO Egnema de montagem DATA 105/95 SETOR: 16 9/15 ADUTORA 41T-1.3 L FOLHA 9/15
LINHA	Nº DO PONTO	ESQUEMA	DESCRIÇÃO
0-1		9	1) 12100m FUED IN GATE PN60, PB SE, ON I SOMM
		l. 16	DRD DEFORX PBA, BBB, JE, DN 150X50WHI DRD DEFORX PBA, DN 150X 100 MM (1
	1	(3 (2) (1)	3 ADAP LF PI BOLSA PBA DN 100mm (1) TOWN PP DN 100 MM, L= 0,25 m (1) S ADAP LF PI BOLSA PBA DN 50mm (1)
		JT.	1) 18200m TUBO IRITAT-1= PNBO, PE JE, DN 100mm
1-3		£ 1:10 3	DREWX+0 C/80,2 SOLIZE = 12+32-17, 8730,
	2.	† / ① - ɔ ' (-> (- ·	DM 100x75mm (1) (2) TOCO 12 - 22-15 1120 C/PONTE, 1475 MM, L=Q25m (2) (3) 75 25 25 125 C 2 15 20 15 15 25 15
		2	MIRE, STIFEX FORM. ON WORLD FOR FULLY FULL MACHO 18 F AL-LF
		(car	1730, St1 = 2000. (4)
2-3			DTE CH REDIKATION BOLSKE SOLDANES IKENSE
	3.	2)·9	(1) OFE STATES OF DUSTE SOCIAL AND CENA OF DATES OF DATES OF AND APPLIED FOR APPLIED OF DATES OF DAT
		30	3) TOW IRRIGA-LF PNBO C PONTAS ON75mm : L=0,25m (1) 4) CAP SOLDÉVEL JARIGA-LF, PNBO, DN75mn. (1
			17
		-	
		+	
		- - -	
		-	000023

VIII.	PROJETO	DOMENSA II	ASSUNTO Squema de Montagem DATA
LINHA	Nº DO PONTO	ESQUEMA	DESCRIÇÃO
0-1		(1) Car	@ 187,004 TUBO IRPLEA-LF PN 60 PB, JE DN 15044
1-2	1.	93 2 D	TE 90° DEFOFOXPBA BBB JE DN 150X50m (1) Q RD. DEFOFOXPBA PB JE DN 150X600mm (1) Q ADAP. LF P/ BOLSA PBA DN LOOMM (1) Q TOCO PP DN 100mm; L=0,25m (1) Q ADAP. LF P/ BOLSA PBA DN 50mm (1) Q ADAP P LISAX ROSCA MACHO, DN 50mm (1) Q ADAP P LISAX ROSCA MACHO, DN 50mm (1)
2-3	2	9 + 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1) TE PK 88B SOLD. DN 100 x 50mm (2) (3) PD PK BBB SOLD. DN 100 x 75mm (1) (4) TOCO PP DN 75mm; L= 0, 25m (5) ADAP P. LISA X ROSCA MACHO DN SOMM (2) (6) FURNGE POSCADO DN SOMM (1) (7) TOCO PP DN 100mm; J= 0, 25m (1) (1) (1) (1) (1) (1) (1) (1
	3	(-) (-) (-) (-) (-) (-) (-) (-) (-) (-)	PNBO, DN 75x50mm. (1) PNBO, DN 75x50mm. (2) ADAPTATOR PONTA LISAX ROSCA MACHO IRRIGA-LF (1) PNBO, DN 50mm. (3) TOW IRRIGA-LF PNBO c PONTAS, DN75mm; L=025m u (4) CAP. SOLDADEL IRBIGA-LF, PNBO, DN 75mm. (1)
			000024

Vine Times	PROJETO Z	UCUNDYBA II	ASSUNTO Gamena de Mondagen DATA 105/95 SETOR: ADUTORA 1.7.156 FOLMA 11/15
LINHA	Nº DO PONTO	ESQUEMA	DESCRIÇÃO
0-1	- ·	2	181,00m TUAN IRRIGA-LF, PN 60, PB, JE, DN ISCAM
	1.	3-13 2 	(A) TODO C POUTAL IFFIGA-LF PN 50 CN 150mm.
1-2		27	1 181.00m TUBO IRRIGA-LF, PN 60, FE, JE. 211 150 mm
	2.	3 1:21 1+	DTÉ 90° DE REDUÇÃO VINILFER DEFOTO X PBA C/ BNISE PN 60, DN 150X 50 mm. D FISFTAME IREISA-IE P/BN A YEA 21/3), ON 50 mm. 3) ADAUGUE PONTA LSAX ROSCA MACO 16-36-25 EN 30, DN 50 mm. 4) TOUO C/ FONTA ISFISA-LE PN 60, LN 150 mm. L=930 m.
2-3		13 N	1) 20,00m TUBD IRRIGA-LF, PN 60, PB, JE, DN 150mm
	3.	J-14 ② ↓ 3 →) 1 C	DTÉ 90° DE REDUÇÃO VINILFER DEFOFO X PBA C/ BOLSAS PI 60, DN 150x 50mm. (1 2) ADAPTADOR IRRIGA-LF P/BOLSA PBA, FN 30, DN 50mm. (1 3) ADAPTADOR PONTO LISA YRDSCA MACAO IRRIGA-LF PN 80, DN 50mm. (1) TOCO PP DN 150mm; J= 0,30m (1)
3-40			3200M TUBO 18016A-LF PN60, PB, JE, DN 150mm
	4a	P P O O O O O O O O O O	DLUVA FORD BB Jt, DN 150 min (4) DRD DEFORD X FBA, PB JE, DN 150 X HOMMA (4) BD ADAR. LF P/ 90 LSA PBA DN 100 min (1) TOCO PP DN 100 min, 1: 0,25 m.
40-4		- Im- Co	

DARPITISK POWT LICA X FOSCA MACHO ISELSALE PHBD, DN 50mm. 3 750 C/PONTS RRIGH-1F MBD, DN 100mm, L=QSS-11 TT DYGOM THE PERDUCAGO C/BDISAL SOLULIZIS IRRIGAL-LE PHBD, DN 100X 50mm. DITÉ DE REDUCAGO C/BDISAL SOLULIZIS IRRIGAL-LE PHBD, DN 100X 50mm. DISLODM THEO IRRIGALE PHBD, DN 100mm, L=QZS-11 1 3 DD C/PONTS IRVIGALE PHBD, DN 100mm, L=QZS-11 TT DISLODM THEO IRRIGALE, PHBD, DN 100mm, L=QZS-11 TTO C/PONTS IRRIGALE, PHBD, DN 100mm, L=QZS-11 TTO C/PONTS IRRIGALE, PHBD, DN 100mm, L=QZS-11 TTO C/PONTS IRRIGALE, PHBD, DN 100mm, L=QZS-11 TTO DISLODM THEO IRRIGALE PHBD, DN 100mm, L=QZS-11 TTO DISLODM THEO IRRIGAL PHBD, DN 100mm, L=QZS-11 TTO	#14.45 #14.45	ркојето Ј	UCUNOUBATE	ASSUNTO ENQUENON DE MONTOJEM DATA 105/95 SETOR 19 FOLHA: 12/15
DTE PLE BE SOLD. DN 100 x 50 mm. IN TOWN PP DN 100 mm 1 = 0.25 mm. IN THE PP DN 100 mm 1 = 0.25 mm. IN THE PP DN 100 mm 1 = 0.25 mm. IN THE PP DN 100 mm 1 = 0.25 mm. DTE REDUCED SEPTEMENT FOR MECHO IS USA-LE PUBD, DN 100 mm, L-0.25 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE PUBD, DN 100 mm, L-0.25 mm. DTE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE PUBD, DN 100 mm, L-0.25 mm. DTE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE PUBD, DN 100 mm, L-0.25 mm. DTE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE PUBD, DN 100 mm, L-0.25 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE PUBD, DN 100 mm, L-0.25 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 x 15 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 x 15 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 x 15 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 x 15 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 x 15 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 x 15 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 x 15 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 x 15 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 x 15 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 x 15 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 x 15 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 mm. DIE DE REDUÇÃO SEDISA SOLULIES IRRISA-LE, PN 80 MN 100 mm. DIE DE REDUÇÃO SEDISA S	LINHA	1	ESQUEMA	DESCRIÇÃO
1-20 Dr K RECURDS CHOUSES SOLDIES IRRIGA-LE #130. IN 100 x 50mm. 2 ARCTES REGISTOR LEA X FORM MACHO IRRIGA-LE PH30. AN 50mm. 3 TOD CHONTES IRRIGA-LE /1130, IN 100mm, L=QSS 1 T DITÉ DE REDISTAS SOLDIES IRRIGA-LE PH30. DN 100 x 50mm. 2 ADDEPTODE PHTTO SIEN REGIS MACHO IRRIGA-LE H130, DN 100 x 50mm. 2 ADDEPTODE PHTTO SIEN REGIS MACHO IRRIGA-LE H130, DN 100 x 50mm. 2 DILLOM TUBO IRRIGA-LE PH30, DN 100mm, L=Q2S (N) 1 T DILLOM TUBO IRRIGA-LE, PN30, DN 100mm, L=Q2S (N) 3 TOD CHONTES IRRIGA-LE, PN30, DN 100mm, L=Q2S (N) 3 REUSED CLOSURES SULVIES IRRIGA-LE, PN 30 DN 100 x 50mm. 3 TODO CHONTES IRRIGA-LE, PN30, LN 75mm. (N) 3 TODO CHONTES IRRIGA-LE, PN30, LN 75mm		4	1:20 3 - 7 - 2 1:20	3 ADAR P. USAX ROSCA MACHO, ON SOME II
## 30, LN 100x 50mm. DAMPTIJK PYNTZ LIEA X FYSCA MACKY ISELSA-LE PHBD, LN 50mm. L. QS. (1) DIED C/PNITZ S. PRIJA-'F MBD, DN 100mm, L-QS. (1) DIE DE REDUCHO S/BJISA SOLOL/E/S IRRISA-LE PHBD, DN 100x 50mm. DIED C/PNITZ SPITZ LIEA X RYCK WACHO IRRISA-LE PHBD, DN 50mm. (1) DIED C/PNITZ SPITZ LIEA X RYCK WACHO IRRISA-LE PHBD, DN 100mm, L-QZS (1) DIED C/PNITZ SPITZ LIEA X RYCK WACHO IRRISA-LE PHBD, DN 100mm, L-QZS (1) DIED C/PNITZ SPITZ LIEA X RYCK WACHO IRRISA-LE PHBD, DN 100mm, L-QZS (1) DIED C/PNITZ SPITZ LIEA X RYCK WACHO IRRISA-LE PHBD, DN 100mm, L-QZS (1) DIED C/PNITZ SPITZ LIEA X SOLOMBER SOLVERS SOLVERS IRRISA-LE, PNBD, DN 100mm, L-QZS (1) DIED C/PNITZ SPITZ LIEA X SOLOMBER SOLVERS SOLV	4-5		D ~	
1) TÉ DE REDIGÃO C BDISAS SOLDA EIS IRRISA - LE PI BD, DN GOX 50mm . (1) 30 DOS 50mm . (1) 40 DOS 18819A-LE PN 30, DN 100mm , L-Q25		5,	→>\(-\)	PRI 30, CN 100x50mm. (1)" (A)" (A)"
PH 8D, DN 100x 50mm. (1) (1) (1) (1) (1) (1) (1) (1	5-6		375	19460m 100 188164-18 11130, 16, = 111 100 vn
T=0 DTÉ C/BOLSAS SOLDAVEIS IRRIGA-LF, PN 80, DN 100mm, L=0,75m (C) DN 100x 100mm. DITO C/PONTAS IRRIGA-LF, PN 80, DN 100mm, L=0,75m (C) ARENXÃO C/BOLSAS SOLDÁTEIS IRRIGA-LF, PN 80 DN 100x 75 mor DIZ,00m TUBO IRRIGA-LF, PN 80, PB, JE, DN 75mm. DTÉ C/BOLSAS SOLDÁTEIS IRRIGA-LF, PN 80, DN 75x 75 mun. DTÉ C/BOLSAS SOLDÁTEIS IRRIGA-LF, PN 80, DN 75x 75 mun. DTÉ C/BOLSAS SOLDÁTEIS IRRIGA-LF, PN 80, DN 75x 75 mun. DADAPTADOR PONTA-LISA X ROSCA MACHO IRRIGA-LF PN 80. DN 50mm.		6.	→ >\(\frac{1}{2}\)	PH 80, DN 100x 50mm. (1) 2 ADRPTEDGE PONTO USEX ROSCI. NACHO IRRIGILA
DN 100×100mm. 2 TOWN C/PONTAS IRRIGA-LF, PNBO, DN 100mm, L=0,75mm (2) 3 REDUÇÃO C/BDUSAS SUNSTEIS IRRIGA-LF, PNBO DN 100×75mm 4 TOWN C/PONTAS IRRIGA-LF, PNBO, DN75mm. L= Q25m/11/ D12,00m TUBO IRRIGA-LF, PNBO, PB, JE, DN75mm. D12,00m TUBO IRRIGA-LF, PNBO, PB, JE, DN75mm. D15 C/BDUSAS SOUDAVEIS IRRIGA-LF, PNBO, DN 75×75 mum. D15 C/BDUSAS SOUDAVEIS IRRIGA-LF, PNBO, DN 75×75 mum. 2 ADAPTADOR PONTA-LISA × ROSCA MACHO IRRIGA-LF PNBO, DN 50mm. (2)	6-7		-7~~	DISL, 00m TUBO IRRIGA-LF, FIJBO, PB, JE, DN : 30mm
DIZ,00m TUBO IRAIGA-LE, PN BO, PB, JE, DN 7 Smm. OTÉ C/BOISAS SOLDA JE S IRRIGA-LE, PN BO, DN 75 x 7 SMM O ADAPTADOR PONTA LISA X ROSCA MACHO IRRIGA-LE PN BO. DN 50mm. (2)		7=0	(1) (2) (4) (1) (3)	DN 100×100mm. (17' 2) TOWO C/PONTAS IRRIGA-LF, PNBO, DN 100mm, L=0,75m (2) 3) REDUÇÃO C/BOLSAS SOLIXÍFIS IRRIGA-LF, PNBO
8. DN 75x7 (MM) B. DN 75x7 (MM) DN 75x7 (MM) DN 75x7 (MM) PN 80. DN 50mm. (1) (2)	7-8		D	(1) 12,00m TUBO IRAIGA-LF, PN 80, PB, JE, DN75mm.
1.18 9 PD. BB 50LD. DV 75x 50mm (2) 27 250 26		8.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DN 75x7 SWMM (1) (2) ADAPTADOR PONTA·LISAX ROSCA MACHO IRRIGA·LF PN 80, DN 50mm. (2) (3) TOCO PP DN 75mm; 1: Q25m (2) (2) (3) PD. BB SOLD. DN 75x SOMM (2)

HIT SE	PROJETO Z	UCUNDUBA II	ASSUNTO SETOR - ADUTORA	ADT: 1.51L	DATA-	13/15
LINHA	Nº DO PONTO	ESQUEMA		DESCRIÇÃO		
0-1		Q M	D 224	Om TUBO IRRIGA-LF, P	N80, PB, JE	DN 100mm
	1	D 2 -> S:16	P11 5	ZD 5/60LFE 50LN/1 , DH 100 x 50 mm . PRIOR POITZ LISAX 21	50 101.3 54 11:40	:= (1) (1)
			FI SU	, W 50 mm -		
		•				
		-		<u>.</u>		
-						
						<u>·</u>
					•	
		<u>.</u>			000	027

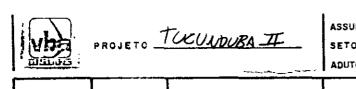
HI TO SE	PROJETO <u>7.</u>	XINDBA II	ASSUNTO Equema de Mondagem DATA: 105/95 SETOR: 21 FOLIA 14/15
LINHA	Nº DO PONTO	ESQUEMA	DESCRIÇÃO
0-1		1 (2	DIZTOON TUBD IRKIGE-CF, FN 60, PB, TE, DNZOO MM
	1.	(3) (3) (4) (4) (4) (4)	1) TE 30'REDUCAD VINILFER LETSFOXPEA C/BOLSE, PA 60 DIT ISOX 50 mm. (A) 2) A DAFTADOR TERIGL-LE P/ 307SA PBL, LIV I (A) 3) AMPTALOR FORTZ LISA KROSCA MACHO, PN 30, LN 50mm, CL 4) REDUCAD VINILFER DEFORD PB, JE DN 200X ISOMULIA 5) TOCO PP DN ISOMMI. I= 0,30mm (1) 1]
1-2		· P	060,000 mm 71/80 1RF, GA-LF, PNGO, PB, JE, DN 150mm
	?	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1 TE 90° DEFOFOX PBA, BBB, JE, DN 150X SOUND! 2 TOCO PP DN 150 mm; 1=0,30 m (1) 3 ADAP PLISAX ROSCA MACHO, DN 50 mm (1) 4 ADAP. LF P/BOLSA PBA DN 50 mm (1) 1T
2-3		D	D79,000mg TUBD IRRIGA-LE, PN60, PS, SE, DN 180mm
	3	1.30 1.49 ->+(>	DTE 90° DEFOPO × PBA, BBB, JE, DN 150x50m(1) TOCO PP DN 150mm; [0] TOCO PP DN 150mm; [1] ADAP LF P/ ROLSA PBA, DN 50mm [1] S) ADAP P. USA × ROSCA MACHO, DN 50mm [1] T
3-4		J.M	103,00 TIUBO LERIGA-LF PU 60, PB, JE, DN 150 mm
	()	1 7 6 1 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	DITE 90: DEFOFO BBF ON 150 x 50 mm (1) 2 TOWN PP DN 150 mm; 1= 1,50 m (1) 3) CRNXCHA DEFOFOX PBA, BRBB, JE, DN 150 x 50 mm (1) PRD DEFOFOX PBA PB, JE, DN 150 x 100 mm (1) 5) ADAP. LF P BOLSA PBA DN 100 mm. (1) 6) TOWN PP DD 100 mm; 1= 0,25 m (1) 7) ADAP. LF P/ POLSA PBA, DN 50 mm (2) 8) ADAP. PLISAX ROSCA-MACHO, DN 50 mm (2) 2 T 1 VT TIPO 1

Him P	ROJETO TU	CUNDURA II	ASSUNTO Exquent de Montagen DATA. 105/95 SETOR: ADUTORA J. 6 L FOLHA 15/15
	Nº DO PONTO	ESQUEMA	DESCRIÇÃO
4-5		Pm (4	182004 tubo puc le pn80, PB, JE, DN 100 min
	5	1.27 37 G) 0 0 0	1) TE PUC BBB SOLD, DN 100K SOMM (1) 3) TOCO PP DN 100 MM ; l= 0,25 M (1) 3) CAP SOLDAVEL DN 100 MM (1) 4 DAP PLISAX POXA MACHO, ON SOMM (1) 1T
,			
		-	000029

CAPÍTULO 4 - DIMENSIONAMENTO E ESQUEMA DE MONTAGEM DA ADUTORA PRINCIPAL E DAS ADUTORAS DOS PIVÔS

TUCUNDUBA II

ADT PUT MIN	ADT	Νō	COTA (m)	0 (1/*)	L (m)	D (mm)	v m/s	(m/m	Δh (m)	Hf (m)	P NECESS	H (m)	P (m)
ADT PRINC.		OZEB PF:RES	50,9J 87,60	3 70,00	2892,23	600	1,31	0057	37.5	ĵ 6.0-j	1,00	43.76 1.00	94,67 88,60
APT PIVO 1		0=EB 1=PIVO	87,83 84,96	86,25	560,00	520	1,77	0'0108	-287	6,05	41,82	45,00 41,82	13283 12678
ADT PIVO 2		0=eB 1=PIVO	87.88 81.23	8656	S}0,00	210	477	0'01Q8	- 6,65	4,16	41,82	41,33	129,21
ADT PIVO3		0:EB 1=PN0	88,08 87,00	86,25	57400	510	1.77	O'O (O)S	-108	6,16	41,82	46,90 4482	134,98 J28,82


PROJETO TOCCUPURA II.

ASSUNTO : Esquema de Montagem DATA /05/95
SETOR: 25
ADUTORA: PRINCIPAL FOLHA 01/04

ការវាចិ			ADUTORA: YXID CITAL
LINHA	Nº DO PONTO	ESQUEMA	DESCRIÇÃ ®
	ः हा ०	ESTAÇÃS DE BOMBEA - MENTO PRINCIPAL EB-P.	
0-1		QUMTIFICADO E MON- TABO JUNTAMENTE OM A EB-P.	VEJA DETALHES NAS PLANTAS DA 68-P
	1=0+14,14,	audificaco e man- traco suntamente can A EB-P	VESTA DETACHES NAS PUENTAS DA EB.P
1-2		<u> </u>	PN10 \$ 600 mm
	2=e11 3+3,9Q	·	OI CURUM FARES DUETIL 11º15 C/BOLSAS \$ 600 mm
2-2a			16,10 n or TUBO FORED EVETIL &B IN 10 & 600mm
	2a=Est·4 + 0,00m		II TÉ BOLSA-FLALGE F DUCTIL Ø 600 × 200 MM DI: DESCARGA DE LIMPERA (OBRA TIPO) VETA DETALHE NA PLANTA DE DESCARGA DE LIMPERA I D L TYPO Z
2a-2b		cc	200,00 m pt TUBO FORD DUTIL PB PN-10 \$ 600 m
	26 = 65T 14 + 0,00m	y ¹ 2 ->-L(-	OS TÉ BOSS-FUNCE F OVERL 1600 ×200 mu VI: VENTOSA TRÍPLICE (OBEN TIPO) VESA DETALBE NA PUNTA DE VENTOSAS IV TIPO 3
26 - 2c		— ఁ —	80,00 m per TUBO FORED DUETIL PB
	2C = 857 18 + 0.00m	->	01 TÊ BOLSA-FLANGE F DIETIL \$600 X200mm DZ: DESCARGA DE LIMPERA (OBRA TIPO) VEJA DETALNE NA PUNTA DE DESUNGA DE CIMPERA 1 DL 400 2
2e - 2D			140,00 m pr 7080 Fores DUTH PB PN 10 \$ 600 mm

प्र.स्त्र संस्कृत	PROJETO	TUCHOUBA II	SETOR: 26 ADUTORA: PALVEIPAL FOLHA 02/04
LINHA	Nº DO PONTO	ESQUEMA	DESCRIÇÃO
	20 = 657 25 + 0,00 u	-)	02 tës BOLSA-FLANCE F DUCTIL \$600 X600MM 1,93 M DE TUBO F. DUCTIL Y PONTAS PN10 \$600 MM
2p - 2 E			320,00 m De TUBO FERRO DUETRE PB PN 10 \$ 600 mm
	26= 65T 41 +0,004	\	OL TÊ BOLSA-FLANCE F DUETIL BEODXZOOME V3: VENTOSA TRÍPLICE (OBLA TIPO) VETA DETRUHE NA PLANTA DE VENTOSAS. 1 V T PLPO 3
2E - 2F			160,00m at TUBO F DUCTIL & PN 10
	2f=est49 +0,00m	→ 	OL TÉ BOLSA-FLANGE FORTIL & 600 ×200 MM D3: OUSCARGA DE LIMPOZA (OBRA TIPO) VEJA DETECHE NA PUNTA DE DESCREJA DE LIMPOZA. 1 DL 100 Z
2f -2G		_ccc	120,00 m DE TUBO F OVETIL PB PU 10
	26=EST 55 + 0.00m	——————————————————————————————————————	OF THE BOLSA-FLANGE F DUCTIL & 600 × 200 MIN V4: VENTOSA TRÍNLICE (OBEA TIPO) VETA DETILLE MA PLANTA DE VENTOSAS. 1 V7 FIPO 3
2G - 2H		cc	260,00 m as TUBO F. DUETEL PB PN 40 \$ 600 mm
	24 = 651.68 + 900m	→ V5 -> — <	OL TÉ BOUSA-FRANCE F. DUETIL & 600 ×200 mm. VS: VENTOSA TRÍPLICE (OBRA TIPO) VEJA OCTALAC NA PLANTA DE VENTOSAS. 1 VT TIPO 3.
2H -21		—c—c—c	240,00m pë tibo Foreo Dietil PB PN10 \$ 600mm 000033

NO IVALLANDA I SITE ASSUNTO Exquera de Montagen | DATA /05/95 PROJETO TUCCHOUBA II SETOR 27 FOLHA 03/04 PRINCIPAL ADUTORA Nº DO DESCRIÇÃO LINHA **ESQUEMA** PONTO Of TE BOLSA-FRANCE F DICTIL 0600 x 200 mm 21 = EST &C D4: DESCARGA DC CIMPOZA (OBRA TIPO) VETA $\otimes_{\mathcal{D}4}$ DETALHE NA PLANTA DE DESCRICA DE LIMPER. +0,00m 10L tipo 2 300,00 m DE TUBO F DUETIL PB 2i -2J PN 10 \$ 600 mm OR TES BOLSA-FLANGE F. DUCTIL \$600x400 mm 25 =67 95 493 m DO TUBO F OVETIL OF PONTAL PN 10 +0,00 m P/ONE-WAY \$ 600 me 177,85 m or TUBO FORRO OCCTIL < 10 0 600 mm 25-3 OS CURVA 22° 30' FORRO DIETIL COM BOLSAS Ø 600 3=651 103 OS toco of pentas F. DUETIL \$600 MM L=0,50 M Of CURVA 11°15' F OVERIL 4 BOLSAS & 600mm + 19,85m 102,15 m or TUBO F DULTIL P.R. PN 10 \$ 600 mm 3-3a al to Basa-Faule F DUTA \$600 × 200 mm 3a=851 199 16: VONIOSA TRIPLICE (ORM TIPO) VOJA +0,00m DETALHE NA PLANTA DE VENTOSAS. 1 VT LIPO 300,00m DE TUBO F DUETIL 3a - 3b PN 10 0 600 mm al to BOISA-FLLIGHT & DUTIL & 600 x 200 mm 38 = EST. 124+0,00m VT: VENTOSA TRIPLICE GRAN TIPO) VESA DETALBE NA PLANTA DE VENTOSAS. JVT TIPO 3 28,66 M DE TUBO FARED DUTIL PB 38 - 4 IN 10 \$ 600 mm OI CURVA 22° 30' FORED OVETH C/ BOLSAS 4 = 651. 125 + 8,66 m Ø 600 mi 000034

Francipal FOLHA O

ग्रामक्ष			ADUTORA		IKING	1714			04/04
LINHA .	Nº DO Ponto	ESQUEMA			D	ESCRI	ÇÃO		
4 - 5		_ 	383,57 PN 40	'm > @	0 & 5 60	TUBO O mu	FOR	DIETIL	PB
	5= 657. 164 + 12,23 m		CBLA RESURV	ac ATÓR	<i>De</i> s 10	OF DE	DA	ADUTO!	es vo
								`	
						-			
		-							
								00	0035

AD PU-1	vb.	PROJETO	TUCONDURA II	ASSUNTO SQUENCE de Montagem DATA 105/95 SETOR. ADPUL, AD PUZ & ADPUZ FOLHA 01/01
	LINHA	Nº DO Ponto	ESQUEMA	DESCRIÇÃO
		0	QUANTIFICADO E MONTADO JUNTAMEN- TE COM O BARRIES- TE DE RECALQUE	
	0 - 1		~~~	560,00. M DE TUBO F. DIETIL PB PN 10 Ø 250mm
		1		OL OTTERMIPADE PONTA-FLANGE F DUETIL PN 10 \$ 250 mm a: LIBAÇÃO DA ADUTORA C/ PIVÔ CENTRAL
40. PV-2		Q	QUANTIFICADO E MENTADO TUNTAMENTE COM O BARRILETE DE RECALQUE	UEJA DETALHES NAS PLANTAS DA EB DE PRESSURIZAÇÃO
	0 - 1		cc	570,00 ps TUBO F DUETIL PB PN 10 \$ 250 mm
		L	-c-11-@	OS EXTREMIDADE BUTA-FLANGE F. DUCTIL IN 10 Ø 250 MM Q: LIGAÇÃO DA ADUTORA C/ PIVÔ CENTRAL
40. PV-3		0	QUANTIFICADO E MONTADO JUNTAMENTE COM O BARRILITE DE REALQUE	NESA DETALHES NAS PLANTAS DA EB DE PRESSURIZAÇÃO
	0-1		cc	530,00 m po tibo F DUOTIL 18 PN 10 \$ 250 mm
		1		OI EXTREMIDADE POUTS-FLANGE FERRO DUETIL PN 10 Ø 250 mm
			(a)	Q: LIGAÇÃO DA ADUTORA C/ PIVÔ CENTEN. 000036

QUADRO 1

																Presão					
N [®] do	1	Area	Vaza	,	Cotes 8	34sicas				dutora				Destivers		no	Perdes	AMT da	Born	bes	
Pivô	1	(he)	(au)	Comma de	Cotts do Eixo	Cots mais no	Cots mais	Comprimenso	Vel	J	Ah	Diámetro	Succeso	Recalque	na Área	Centro	Localizadas .	Bomba	Modifilo	n	Motor
	l			Succido	de Bombe	Centro do TN	alte do TN	de Adutora	(m/s)	(m/lem)	ADT_	(mm)			dio Prvii	(IN Plane)		(m.c a.)		(%)	
		75	86.25	87,20	88.90	85.00	91.98	560.00	1.77	10.80	6,05	250.00	1.70	-3,90	7,00	40.94	2.80	54.39	ETAMORA 125-400		(90) 100 CV
2		75	86.25	87.20	88,90	81.00	87,20	570.00	1.77	10.80	6.15	250.00	1.70	-7,90	6.20	40.94	2.34		ETAMORA 125-400		1
3	\perp	75	96,25	87.20	88.90	85.80	96,30	570.00	1.77	10.80	6,16	250,00	1.70	-2.10	9.50	40.94	2.80	59.00	ETAMORA 125-400	77	(87,8) 100 CV

Arq Ref_t2wb1

CAPÍTULO 5 - CÁLCULO HIDRÁULICO DA EB PRINCIPAL, DAS EB'S DOS PIVÔS E DA IRRIGAÇÃO LOCALIZADA

FOLHA DE CA	rcoro		_]				32	COMSULTORES
PROJETO TUCKNOWSA J							FOLMA	01/06
ASSUNTO CALCULO HIDE				PRINE	 -			
PAEFINO CÁLCINO	AL:	VEA	FICAÇÃO			DATA	105/93	<u> </u>
1) - PERDA DE CAZGA CO 1510 #24200 CONBROTES & U		11.6T	2 5 217	DA G	<u>EB - j</u> 400) (AC/240)	0 <i>5 I.U</i> .	15
a) success		K	D (m)	a	D 4	a^2	12,10 d4	TOTAL
- VECUOIA DE PÉ C/ CZIA	2 \$300mm	2,50	0,30	0,0925	0,008	0,00856	0,22	
-cc XVA 45° \$ 30	omn (0,20	0,30	0,0925	0,0081	0,000	0,02	74
_ CURVA 22" 30" \$ 30	oun (0,10	0,30	0,0325	0,0021	010336	0,01	0,32
- RODIA EXCENTRA	300mm x 200mm	Q, 15	0,20	0,0925	0,0016	C.00350	0,07	
b) RECALQUE	Γ	_ 	_	I		,		
- AU LIAGIS 150 X					ľ		0,42	4
- CURIA 90° / 250	⊢	0,40	2,25	0.0925	0,00 3 9	0,00156	0,09	
- CURVA 90° \$ 250	<u> </u>	0,40	0,25	0,0915	0.0039	0,00256	0,07	-
-CULLA 90° \$ 250	<u> </u>	2,40	0,25	0,0825	0,0039	opods6	0,07	र्
- USEUURS DE ZETENGOS	\$ 250 mm	2,50	0,25	0,0925	0,0039	0,008/6	0,45	14
- REGISTRO DE GAUGTA	<u></u>						0,01	
-Ampliació Ø 250 x3	_		0,25	0,0925	0,0039	0,003,40	0,05	
C/ BARRILETE DE 200	AL QUE (P/ Bou	BA 3)				 -		
- Tê 500mx 300m	n (0,32	0,30	0,185	0,0081	0,034	0,11	_
- Tê 500mm x 300	un	,28	0,50	0,277	0,0625	0,077	0,03	
6 500mm × 300	1	28	050	024	00625	101217	0,05	

000039 (cartinus ..)

FOLHA DE CÁLCULO

PROJETO TUCCHOUBA II						FOLHÁ	02/06
CÁLCURO HIDRÁULICO DA	co t	RINC	PAL				
PREFIRO CAICULO	VEA	FICAÇÃO			DATA	105/9	5
	K	D (M)	a	04	Q^2	KR2 12,10. A	toral
- CURVA 45° & SOOM	0,20	0,50	0,31	0,0625	0,137	0,04	
- CL240 45° \$ 500 ~~	0,20	0,50	0,37	0,0625	0,139	0,04	32 4
- AMPLIANE Ø SCOX YOUR	0,30	950	Q, 37	0,0625	0,139	0,05	0,3

TOTAL PI PERDA DE CARGA ZOCALIZADA NA EBPRINCIPAL: AHI = 0,32 + 1,14 + 0,32 = 1,78 m

NOTA: A PERDA DE CARGA ZOCALIZADA DA CB-PRINCIPAL SURA CONCIDERADA CONSTANTO E JOUAL AO VALOR ACIMA, CAL CULADO PARA A PIOR SITUAÇÃO DE FUZIONAMENTO.

2) - DES NÍVEL GOOMÓTRICO

SUCÇÃO: Name =
$$47,70$$
 ~ $\Delta h_s = 3,22$ ~ $COTA GOO DA BOMBA = $50,915$ $\Delta h_s = 3,22$ ~$

AH2 = 3,22 + 37,58 = 40,80 m

NOTA: PAM FINS DE CÁLCUZO CONSTIDEROU-SE A PIOR SITUAÇÃO DO BOUBEAMENTO, OU SETA, NÍVEZ MÍNIMO NA SUE FATO E NÍVEZ MIXIMO NO RESERVATORIO. 999940

FOLHA DE CÁLCULO

34

CONSULTORES

ASSUNTO SICURO MIDRAURICO DA EB PRINCIANZ

PREFIFO CALCURO MIDRAURICO DA EB PRINCIANZ

VERIFICAÇÃO (1914 /05/95

3 - PERDAS DE CARGA NA ADUTOZA PRINCIPAL

cousção DAS PERDAS (HAZEN-U/LUIAM) C=140

AH2 = LxJ + Ahwarz. 1 L= 2 892,83m

Ahlower = PERDAS MAS CURVAS AO LOLDO DA AOSTOLA.

02 CURUAS 11° 15' \$ 600 mm

 $\Delta H_3 = L \times 1.12 \times 10^{-3} \times \frac{Q^{1,852}}{D^{4,87}} + EK \frac{Q^2}{12,10D^4}$

 $\Delta H_3 = 2 \frac{892,23 \times 1,12 \times 10^{-3} \times 20^{-1,852}}{(0,60)^{4,87}} + 0,60 \times 20^{-12,10 \times (0,60)^4}$

AH3 = 38,98 x Q +0,383 Q2

 $P/Q = 370 L/s = 0.37 m^3/s$ $AH_3 = 6.23 m$

4- ALTURA MANOMOTRICA TOTAL DO SISTEMA:

EQUAÇÃO: [AMT = 42,58 + 38,98,Q + 0,383,Q2]

MER P/ QTOTAL = 48,81 MCA.

					0.0003
######################################		FIGURA 1		▗▗▗╎ ▗▗┊ ▗▗┊ ▗▗┆ ▗	
		S MANOMETRICAS MEEAMENIC PRIN	(AMT) PA		
▊██ ▊▊▊▋▜▗▜▜ ▄████₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽		MEEAMENITOEPRIN	CIPAL	· ````````````````````````````````````	
			<u>, </u>		
				╒ ╃┇╃╃╃┩╏╉╏╬┇┇╏┆╸╶┋┈╶╛╏┆╏╏╛╏┋┇┇┇╬╏╏ ┡╘┇ ╂┇╂╃╂╇┼╃╒╗┠┼╀┺┪╌╾╾╶╸╶┆╏ _{╒╇┸} ┪┟┷┯	
					86.0
				KMF = 42.58 + 56.98 C	16 6 6 6 8 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CURVA OE AME				rain Se Base	
				185.0	50
				370 d	
35					
	ABRICANTE DA BOMBA				103111111111111111111111111111111111111
Q.P.		2.9	7, p. 3, 1 1 1 1 1 3 3 1 1 1	ion ion	EÃO DO SISTEMA
DAS A SER COMPLESANT PERS	ABRICANTE DA BRIMBA				

05/06

Ø Entrada 150 mm Ø Saida 125 mm 1750 RPM Largura do roter = 25 mm 250 300 350 450 500 200 100 400 50 50 n=61% 80 £415 70 0:00 Hm 60 0300 60 65 70 75 50 BO 40 30 5413 6 -3 2 175 تزام كالتعتب 15C \$400 125 - 9350 ø 360 100 0330-75 50 25

PROJETO	TURUNO	UBA II					FOLMA 06/06
ASSUNTO	viuro	HIDRAULI CO	DA	68	PRINCIPOL		
PHEFIFO		CALCULO		VEHIFICAÇĂ	0	[7A]A	105/95

5) VAZÃO, ALTURA MANOMETRICA FINAL O POTEÑOIA DOS MOTORES DAS BOMBAS.

* P/ O PONTO NOMINAL DE OPERAÇÃO, TEM -SE:

Quer = 92,50 l/s Aut = 48,81 m.cA.

P = 92,50 × 48,81 × 1,10 = 82,77 CV,

ADOTOU-SE A POTÉRICA COMERCIAL DE 100 EU, 1750 RPM - 380 V.

					1-	QUSOR	0	œ	DADE	25	81	s Icos				PIVÔS:	- DIMENSIONAMENTO	bid to 3	2	PHONIO TOCKIOUBA	FOLH
Nº 20	AREA	VAZÃO		CO FAS	BASICAS	MIS ALTA			UTORA	1		 	ysniver.		PRESSED DE PUNCU NECOSSALIA	 2V	VAME	314.1	8		FOLHA DE CÁLCULO
PIVÔ	(HA)	16/5)	SUCAS	BOMBA	oo Pivô	MAIS ALTA NA ARFA DO PIVÔ	COMPRIM (M)	(M/S)	(M/Ku)	ΔH (m)	(um)	5UC\$A9	RENQUE	PIVÔ	P/ Mus			AHI.O	inic	π	CÁLCI
1	75	87,75	87,00	88,36	84,95	92,05	553,94	1,74	10,80	5,98	250	1,36	-3,41	7,10	40,94		5We	` ` `	0 045	•	JLO
2	75	87,75	87,00	88,36	31,20	89,50	568,08	1,77	10,80	6,14	250	1,36	-7,16	6,30	40,94	;	Banbas	AT DE M SELTA	EB15		
3	75	87,75	84,00	88,96	87.00	93,60	570,00	1,77	10,80	6,16	220	1,96	-1.96	4,00	40,91	1	200	c	005		
																	PRESSU	Pala	PINOS		
000																	PRESSURIZAÇÃO	/05		FO	38
00004%																	205	105/95	,	k 1	Internation of the second

TOTAL (4)

0,42 m

P#O 4.10	TKUNDU	BA II	•				02/04
A 19 3	CAÉCURO	HIDRAURICO	045	CB'5	Dos	PILOS	
Ovi i Isid		£.A12 101.0		Atmit #fg	υ	11414	105/95

2- PERDAS DE CARDA LOCALIZADAS NA EB DE PRESSURTAÇÃO :

a) suesão:	K	D	Q (43/5)	04	Q2	K &2 12,10 D4
- VALVUA DE PÉ « CRIVO & 300					0,0079	
- CURUA 90° \$300	0,40	0,30	9083	0,0021	0,0019	0,03
- REDIÇÃO CACEMAICA P 300 x 150 mm	0,15	0,15	0,033	0,0005	90077	0,19
b) RECALQUE						
- AMPLIA GAD \$ 125 x 200 mm	0,30	0,125	0,032	0,5002	0,0071	0,96
-TÉ 300 x 200 m	0,91	0,20	0,022	0,0016	0,0099	0,36
- Tê 300 x 200 mm	0,04	0,30	2,632	16000	90011	0,00
- CUAUA 90° \$ 300 mm	0,40	0,30	0,022	0,0034	0,0097	0,03
- CUZLA 90° 7 300 mm	0,40	9,30	acZ	0,208.1	0,0077	0,03
- VALUURA DE RETERGES \$ 300 mm	2, 59	0,30	0,623	0,0031	0,0079	0,20

Nº DO PIVÔ	PRESSÃO NECESSÁRIA NO CONTRO	PERDA DE CARGA NA ADUTOLA	DESNIVEL TOTAL	PERDAS LOCA- LIZADAS 14 B	A.M.T. (M)
1	40,94	6,05	5,05	2,02	54,06
2	40,94	6,12	0,50	2,02	49,58
_ 3	40,94	6,12	10,90	2,00	59,96

000047

TUCUNDUBA TI

ASSUTO CALCURO HIDRÁLLICO DAS EB'S DOS PILOS

LAILARD M: VIMPRAJAU 11A1A /05/95

3- VAZÃO, ALTURA MANOMÓTRICA FINAL & POTÉNCIA DOS MOTORES DAS BOMBAS.

P/ ALNTO DE TEABRIHO:

* PIVÔ (1)
$$Q = 87,75$$
 ℓ/s / $M = 80%$

AMT = 54.06 M / $P = \frac{87,75 \times 54,06}{75 \times 0.30} \times 4.00 = 86.97 \text{CV}$

- POTÉNCIA ADOTADA - 100 CV - 1750 RPM - 320 V

* PINO (2) Q= 87,75 1/5 /
$$N = 80\%$$

Aut = 49,58 m / $P = \frac{87,75 \times 49,58}{75 \times 0,80} \times 1,10 = 79,76cV$

- POTÉRCIA ADOTADA = 100 CV - 1950 RPM - 380 V.

* PINO 3
$$Q = 87,95$$
 L/s f $M = 80%$

Ant = 59,66 m f $P = \frac{87,95 \times 59,66}{75 \times 9,80} \times 1,10 = 95,98 \text{ CV}$

-POTÉRILA ADOTADA = 100 CU _ 1750 RFM - 380 V.

DIMENSIONAMENTO DA EB P/ IRRIGAÇÃO COCALIZADA - PENDAN DE CONGO DONORMO (M) A) SUCÇÃO - Valu de per exerciso on 2002 2.50 0,20 a 000 0,0016 0,0016 0,0016 0,0016 - C 900 plangrada on 2004 0,15 0,08 0,040 0,0016 0,0016 0,0016 0,0016 - Red exemplie - Ampliação 200x80mm 0,15 0,08 0,040 0,0016 0,0016 0,0016 0,002 - Reg grutta 2020 0,000 0,000 0,0016 0,0016 0,0016 0,002 - Tre DN 250x 200 mm 0,33 0,20 0,040 0,0016 0,0016 0,0016 0,002 - Tre DN 250x 100 mm 0,33 0,20 0,040 0,0016 0,0016 0,0016 0,0016 - Reg DN 100 mm 0,33 0,10 0,040 0,0016 0,0016 0,014 0,006 - Reg DN 100 mm 0,33 0,10 0,040 0,000 0,0016 0,016 0,014 - Reg DN 250 mm 22 0,20 0,25 0,12 0,0039 0,0144 0,006 - Reg DN 250 mm 22 0,20 0,25 0,12 0,0039 0,0144 0,005 - Retarcas 250 mm 2,30 0,25 0,12 0,0039 0,0144 0,005 - Retarcas 250 mm 2,25 0,25 0,12 0,0039 0,0144 0,005 - Retarcas 250 mm 0,26 0,25 0,12 0,0039 0,0144 0,005	PROJETO TUCUNDUBA II	<u> </u>					FOLHA	14
- Pendar de canga lovalizado (m) - Pendar de canga lovalizado (m) - Valv. de per el crivo on 2022, 2.50 0,20 a ono a ono 6 0,0016 a ol 21. E - C90° planzeada on 2004 m. 0,15 0,08 0,040 0,0016 a ono 16 0,03 de - Red exântema 2002 80 m. 0,15 0,08 0,040 0,11×10 5 0,0016 0,02 de - Pendar de canga lovado a ono 6 0,016 0,03 de - Red exântema 2002 80 m. 0,15 0,08 0,040 0,016 0,0016 0,02 de - Pendar de canga lovado 0,20 a ono 0,0016 a ono 16 0,03 de - Red exântema 2002 80 m. 0,15 0,08 0,040 0,016 0,0016 0,0016 0,02 de - Pendar de canga lovado 0,20 a ono 6 0,0016 0,003 de - Pendar de canga lovado 0,20 a ono 6 0,0016 0,003 de - Pendar de canga lovado 0,20 a ono 6 0,0016 0,003 de - Pendar de canga lovado 0,20 a ono 6 0,0016 0,003 de - Pendar de canga lovado 0,20 a ono 6 0,0016 0,003 de - Pendar de canga lovado 0,20 a ono 6 0,0016 0,003 de - Pendar de canga lovado 0,000 a ono 6 0,0016 0,00	DIMENSIONAMENTO	DA EB			14A0	0474	•	
A SUCCÉTO K D Q Q Q Q Q Q Q Q Q	John Joseph John John John John John John John Joh	whin	<u>.</u>				105/95	
- Valv. de per el crivo on 2022 2.50 0,20 a 040 0,0016 0,0016 0,21 & C 90° flanzada on 2004 0,15 0,08 0,040 4,1×10-5 0,0016 0,48 - Red example - Amphagia o 200x80mm 0,15 0,08 0,040 4,1×10-5 0,0016 0,016 0,07 - Pez geneta on 200x80mm 0,26 0,20 0,040 0,0016 0,0016 0,00 - Te on 250×200 mm 0,33 0,20 0,040 0,0016 0,0016 0,00 - Te on 250×100 mm 0,33 0,20 0,040 0,0016 0,0016 0,00 - Te on 250×100 mm 0,33 0,10 0,040 0,001 0,0016 0,41 & C 0 0,00 0,00 0,00 0,00 0,00 0,00 0,0	- Pendas de ca	nga	lon	alizoc	bo (m	()		
- C90° flanzeada Du 2004 un 0,40 0,20 0,0016 0,0016 0,0016 0,003 of Recompute - Red. example 200x 80 mm 0,15 0,08 0,040 4,1×10 ⁻⁵ 0,0016 0,48 1 b) RECOMPUTE - Ampliação 200x 80 mm 0,26 0,20 0,040 0,0016 0,0016 0,02 - Te DN 250x 200 mm 0,33 0,20 0,040 0,0016 0,0016 0,0016 0,003 - C45° DN 250 mmx2 0,20 0,25 0,12 0,0039 0,0144 0,006 - te DN 250x 100 mm 0,33 0,10 0,040 0,0016 0,44 \$ - Reg DN 100 mm 0,33 0,15 0,040 0,0001 0,0016 0,34 mm - TE DN 150 mm 0,33 0,15 0,040 0,0005 0,0016 0,041 - C90° DN 250 mmx2 0,25 0,12 0,0039 0,0144 0,085 - Retorição 250 mm 2,50 0,25 0,12 0,0039 0,0144 0,085	a) sucção	K	(m)		D4	Õ _s	12.1xb1	tou
- Red. example 200x 80mm 0,15 0,08 0.040.4,1x10-5 0.0016 0.48 1 b) RECALDHE - Amphação 200x 80mm 0,26 0,20 0,040 0,0016 0,0016 0,02 - Te DN 250x 200mm 0,33 0,20 0,040 0,0016 0,0016 0,003 - C45° DN 250 mmx2 0,20 0,25 0,12 0,0039 0,0144 0,006 - te DN 250x 100mm 0,33 0,10 0,040 0,001 0,0016 0,44 E - Reg DN 100mm 0,33 0,15 0,040 0,0005 0,0016 0,037 - Te DN 150 mm 0,33 0,15 0,040 0,0005 0,0016 0,087 - C90° DN 250 mmx2 0,25 0,12 0,0039 0,0144 0,085 - Retarção 250mm 2,50 0,25 0,12 0,0039 0,0144 0,085	- valu. de per el crivo on zaan	2,50	0.20	0.040	0,0016	0,0016	0.21	
b) RECMANE - Amptração 200×80mm	- C900 flangeada on 200mm	0,40	0,20	0040	00016	0.0016	0,03	o.72
- Amphação 200×80mm 0,30 0,040 0,040 0,0016 0,0016 0,07 - Reg goveta DU 200 mm 0,33 0,20 0,040 0,0016 0,00	- Red. excêntraca 200x 80 mm	0,15	0.08	0,040,4	11×10-2	0,0016	0.48	
- Reg goveta DU 200 UN UN 250 X 200 UN UN X 250 X 200 UN UN 250 X	b) RECEIPLE	<u> </u>	·····				· · · · · · · · · · · · · · · · · · ·	
- Te DN 250× 200 mm 0,33 0,20 0,040 0,0016 0,0016 0,03 - C45° DN 250 mmx2 0,20 0,25 0,12 0,0039 0,0144 0,006 - +E DN 250× 100 mm 0,33 0,10 0,040 0,0001 0,0016 0,44 } - Reg DN 100 mm 0,33 0,15 0,040 0,0005 0,0016 0,087 N - C90° DN 250 mmx2 0,33 0,15 0,040 0,0005 0,0016 0,087 N - C90° DN 250 mmx2 0,25 0,12 0,0039 0,0144 0,085 - Retoricão 250 mm 2,50 0,25 0,12 0,0039 0,0144 0,085	- Amptação 200x80mm	0,30	0,080	0,040 4	1,1×10-5	0,0016	0,97	
- Te DN 250× 200 mm 0,33 0,20 0,040 0,0016 0,0016 0,03 - C45° DN 250 mmx2 0,20 0,25 0,12 0,0039 0,0144 0,006 - +E DN 250× 100 mm 0,33 0,10 0,040 0,0001 0,0016 0,44 } - Reg DN 100 mm 0,33 0,15 0,040 0,0005 0,0016 0,087 N - C90° DN 250 mmx2 0,33 0,15 0,040 0,0005 0,0016 0,087 N - C90° DN 250 mmx2 0,25 0,12 0,0039 0,0144 0,085 - Retoricão 250 mm 2,50 0,25 0,12 0,0039 0,0144 0,085	- Reg goveta DU 200 inv	0,26	0,20	0.040	0,0016	9,00 16	0,02	
- te on 250 x 100 m 0,33 0,10 0,040 20001 0,0016 0,44 } - Reg on 150 mm 0,33 0,15 0,040 2,0001 0,0016 0,34 \ - te on 150 mm 233 0,15 0,040 2,0005 0,0016 0,087 \ - c90° on 250 mm x2 23 0,25 0,12 0,0039 0,0144 0,085 \ - Retenção 250 mm 2,50 0,25 0,12 0,0039 0,0144 0,085	· · · · · · · · · · · · · · · · · · ·	0,33	0,20	0,040	2,0016	0.0016	0,03	
- Reg DN 100 mm 0,36 0,10 0,040 0,0001 0,0016 0,34 10 - TE DN 150 mm 0,33 0,15 0,040 0,000 5 0,0016 0,087 N - C90° DN 250 mm x2 0,25 0,12 0,0039 0,0144 0,085 - Retorição 250 mm 2,50 0,25 0,12 0,0039 0,0144 0,085	- C45° DN 250 mmx2	0,20	0,25	0,12.0	,0039	0.0144	0,006	
- TE ON 150 mm 0,33 0,15 0,040 0,000 5 0,0016 0,087 N - C90° ON 250 mm x2 0,25 0,12 0,0039 0,0144 0,085 - Retenção 250 mm 2,50 0,25 0,12 0,0039 0,0144 0,085	-+E ON 520 × 100 mm	0,33	01.0	0,940	10007	0,0016	0,44	کم
- TE ON 150 mm 0,33 0,15 0,040 0,000 5 0,0016 0,087 N - C90° ON 250 mm x2 0,25 0,12 0,0039 0,0144 0,085 - Retenção 250 mm 2,50 0,25 0,12 0,0039 0,0144 0,085	- Reg DN 100 mm	0,2-6	0,10	2040	20001	0,0016	0.34	15
- Retorição 250mu 2,50 0,25 0,12 0,0039 0.0144 0.085	,	0,33	0,15	0,0400	100 0 5	0,0016	0,087	N
	- C 300 DM S 20 Mm XS	Q28	0.25	0.15	20039	0,0144	0,085	
	- Retonção 250mm	S'20	0,25	0,12	g, 0039	0.0144	0085	
	1	0,26	0,25	0,12	0,0039	0.0144	2800	
								: : : :
								: ;
								:
		1	i			l	l	-

TURUNDUBA II

A JURIO DINENSIO NAMENTO DA BB PI IRRIBAÇÃO COCACIZADA

(ALCHO D. . VERHIRAÇÃO DIA /05/95

TOTAL PAR PERDAS LOCALIZADAS NA EB:

AHL = 0,72 + 2,15 = 2,87 m

PARA O CAICURO DA PERDA DE CARGA LOCALIZADA NA
ESTAÇÃO NÃO FORAM CONSIDERA DAS TODAS AS PERAS,

VISTO QUE MUITAS DERAS POSSUEM PERDA DE CARGA

ABAIRO DE 1.0 cm.

- DETERMINATE DA ALTURA MUDMETRICA TOTAL:

1- PRESSÃO NECESSÁRIA NO PONTO "0" = 43,11 mes

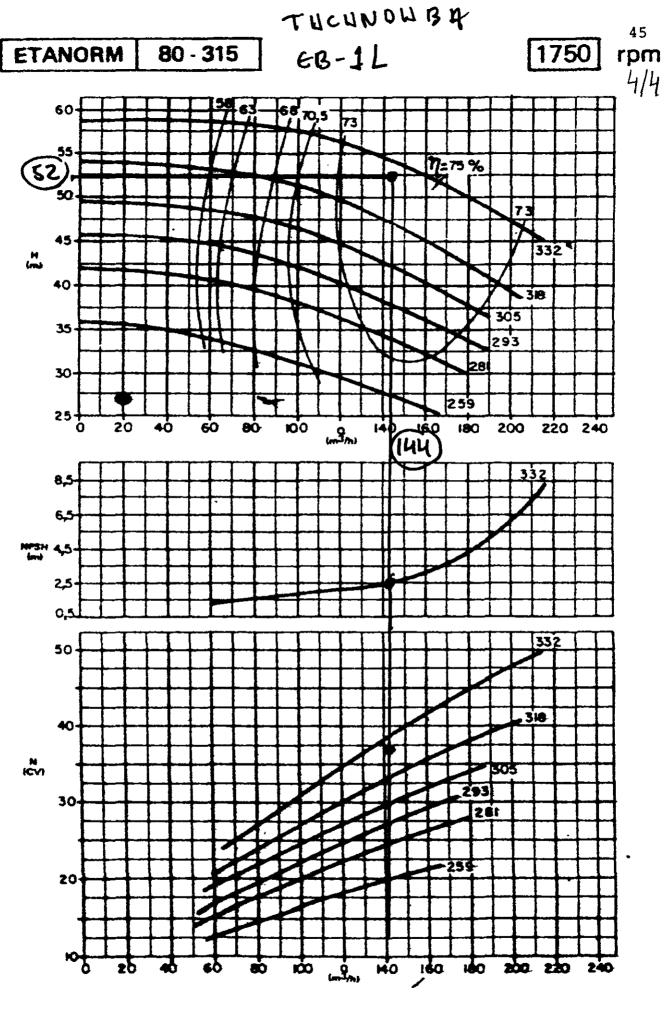
2- PERDS DE CARGA SUCÇÃO + RECENDANE = 2,870 MCA

3 - PERDA NO FILTRO DE AZETA = 4,50 MA

4 - PERDA NO FILTRO DE MALHA = 1,50 -:

TOTAL = 52.00 m.cA

point 1	TUCUNDUBA I	•			101103/04
Austrifo	Duensionsmento	OA	lB	P/ JREIGALD	LOUCIND
21(126	1 Arcord	M:		At the it why C	105/95


- DIMENSIONAMENTO DOS CONTUTOS EZETROBONBAS:

QTOTAL = 120,00 l/s

Qunitains: 40,00 /15

P = 52×40 ×1,10 = 40,00 cv

Adotou-se a poter un comercial de 40,00 e a bomba

1211 464 064 8 2

CAPÍTULO 6 - DIMENSIONAMENTO DO RESERVATÓRIO DE COMPENSAÇÃO E CONTROLE

FOLHA DE CÁLCULO

7 CONSULTONE

OTHLORS	TUCUN DU	RA			•••	FOLHA 1/3
ASSUNTO	DIMENSIO	NAMENTO	DO	PERENVATÓRIO	DE COMPENSACA?	= CONTROLE
PH[F]IQ		CAICULA	wth	VERIFICAÇÃO	(-A1A	105/95

1. Franços do Reservatorio

Companion as eximais diprenços di vajos de bombremula principal EBPO à as vajos dos estatos de
bombes muito dos prose a da area de inigação
bombes pado e, arim, permitir o controle automático
e manual do ophosos dos bombos do recolque
principal sem que se puea somo bombes de
por extremosomento ou que venha a jostar
uo poro de puecos dos EBO dos pivos

2-Dados Básicos e hiterio de finemio mamento
TIPO DA VAZÃO DA TEMPO EZ NºBE MAZÃO
EB: EE (Als) FUNCIANAMENTO BONBAS UNITARIA(1/s)
DOS PINOS 351,00 20 horos 4(1+B) 87,75

DA IRRIGAÇÃO
LOCALIZABA 19,00 21 horos (4+B) 9,5

DA EB90 370,00 20 honos (2+R) 92,5

. Criterios:

- a Tempo minimo entre duos partidos no EBPO: 2 horos
- b-Volume de programa abaixo do mirel de controle para o tempo minimo de 40 minutos
- c À complutações de 21 horos (EB holociliza) para 20 horos de (EB-PO) está automaticamente garantida pela condição b
- d_Reserva intempriel de 0,20m no fundo do reservatorio

PROJETO	TU CUN DURA		FULHA /3
ASSUNTO	RESERVATORIO DE	COMPENSACATI	
PREFIXO	CALEU BUSTOS	VERIFICAÇÃO	DATA 105/95

3-Dimensiaramento de fermations

- · Volume de compensais e regnança de operajos (para 40 minutos)

 Ve = 0,370 × 40 × 60 = 888 m³
- Volume controle (para 2 horos entre duos partidos)

 Vont = \frac{91b\times T}{4b\times T} = \frac{0,0925\times 2\times 3600}{4} = 166,5 m\frac{1}{60m\times 9m} \frac{1}{60m\times 4} \frac{1}{60m\times 6} \frac{1}{60m\tim

Vcout 460mber = 4x166,5m3 = 666 m3

Outine itil de reservations (minimo)

Vrotal jtil = 888 m3 +666 m3 = 1554 m3

· Definica das dimentos do resurstário:

Para 05 volemes as condición de volume ayma deixando-se 0,20m de reserva mitamorival no fundo, e reservatorio que melhor se apreta a um de prima tramo-piramidal opradrado, com funda de 30m x 3m e dos pretas de altino e revarando de 30m x 3m e dos pretas de altino e revarando de 0,30m.

Maioro imponiación sobre a geométria do reservatorio adotodo podem ser observados ma todela e no quofico de altero volume aprocuetados a sepuirios

PAQJETO	TUCUN DUE	} _A			EOLHA /3
ASSUNTO	DESERVATO	RIO DE	COMPENSACAS		
PREFIXO	c.	Konbruck	VERIFICAÇÃO /	DATA	105/95
		/			

FUNCÃO DO VOLUME	VOLUMES	COTA	ALTURA		VOLUME	IVOLUME NA
D'AGUA PESERVADO	_	DE PRO-		CALTURA H	PARCIAL	ALTURA
	(m3)	JETO(M)	(H)	{ +	; 	(H)
	! `	86,80	0.00	900.00	1 0.00	0.00
Reviguation surses	101	01.00	0.10	918.09	1 90.90	90.90
reasoner continues of	184	81,00	0.20	936.36	92.72	1 183.63 1
			0.30	954.81	94.56	278.19
			0.40	973.44	96.41	1 3/4.60
Louising &			0.50	1 992.25	98.28	1 4/2.88
S THE NAME			0.60	1011.24	1 100.17	1 573.06 1
Segmann From	919		1 0.70	1030.41	102.08	675.14
Compensoro & Segmança para o minimo de 40mi			0.80	1049.76	104.01	1 779.15
mutos:			1 0.90	1069.29	105.95	885.10
(= 880 m3)		97.00	1.00	1085.00	107.91	1 993.02 1
		87,90	1.10	1108.89	1 109.89	1 1102.91
Controle liga des			1.20	1128.96	111.89	1 1214.80 ¦
-lipa des 4 bapulos	_	j	1.30	1149.21	113.91	1 1328,71 1
	5 0 F	ŀ	1.40	1169.64	115.94	1 1444.65 1
da EB-PO	7 0 0	· ·	F 1.50	1190.25	117.99	1 1562.65 1
(2 666 m ³)		2050	1.60	1211.04	120.06	1 1682.71 1
		88,50	1.70	1232.01	1 122.15	1 1804.86
		İ	1.80	1253.16	1 124.26	1 1929.12
j			1 - 90	1274.49	1 126.58	1 2055.51 1
		88.80	2.00	1296.00	1 128.52	1 2184.03 1

Dados Coustrutivos e revisio operació mais

- · Forma: house pinamidal com jundo de 30x30m, taludes 3/2 ealture total de 2,0m.
- · NA mox de controle des bombos ______ 88,50 m
- . NA min de controls des bourbo ______ 87,90 m

CAPÍTULO 7 - TIPOS DE VALAS EM FUNÇÃO DOS DIÂMETROS DAS TUBULAÇÕES CONSULTORES - Engenharia de Sistemas Hídricos Ltda.

CÁLCULO DOS VOLUMES DE ESCAVAÇÃO E REATERRO

Para o cálculo dos volumes de esecuração e reaterio, consideron-re os sequintes tipos de balas, de acordo com o quadro, em anixo:

.\$50 - vala de 0,50 m x 0,60 m; .\$75 - vala de 0,50 m x 0,70 m;

· \$ 100- - vala de 0,50 m x 0,80 m;

·\$ 150-200 - vala de 0,60 m x 0,90 m;

. \$ 250-300 - vala de 0,70 u x 1,00 m.

Na vien de irrigaçal localizada quando come a locação de mais de uma adutora destro de una nesma vala, a escavaçal correspondera às dimensos da vala do tubo de maior diâmetro.

Dissing tem-se:

\$150+\$100 \$150+\$75 \$100+\$100 \$100+\$100+\$75 \$100+\$100+\$50 \$100+\$100+\$50 \$100+\$100+\$50 \$100+\$100+\$50 \$100+\$100+\$50

Ø 100 + Ø 75 + Ø 40 Ø 100 + Ø 75 + Ø 35

Engenharia de Sistemas Hídricos Ltda.

Vala de 0,50 m x 0,60 m

101	BA J	TT.			MEMORIA DE CALCULO YBA						
	PROJETO TUCUNOUBA II								FOLHA	1/1	
ASSUNTO											
	FEITO			CONF	CONFERIDO			DATA 10\$95			
		300	326	Ы 7′0	69'0	04'0	0,10	0,70	0,13	75,0	
r		.002	222	67'0	49'0	0,70	0,10	02'0	21'0	85'0	
IAMETROS	PVC PN60JE	150	170,0	0,17	0,63	0,50	0,8,0	0,45	١	5 h′0	
M FUNÇÃO DOS D	PBL	527	125,0	0,19	0,68	0,50	06'0	O,4 5	İ	5 h′0	
O E REATERRO E	30 Je ou	007	9′101	0,20	0,70	0,50	08'0	0,40	1	040	
S DE ESCAVAÇÃ	PVC - PN 40/8	75	75,5	0,24	0,52	0,50	0,80	0,40	1	0,40	
OLO DOS VOLUMES DE ES		50,35	50,5	0,23	0,45	0,50	090	030	-	0,30	
CÁLC	TIPO /CLASSE	DN (WW) DIAMETRO NOMINAL	DE (WW) DiAMETRU EXTERNO	(m)	hr(m)	B (m)	H+(M)	Vocume De Escavação (m3/m)	Volume on Tubo (m3/m)	Volume on Rebream (W3/M)	
	CÁLCULO DOS VOLUMES DE ESCAVAÇÃO E REATERRO EM PUNÇÃO DOS DIÂMETROS	CALCULO DOS VOLUMES DE ESCAVAÇÃO E REATERRO EM PUNÇÃO DOS DIA	FVC - PN 40/80 JE OLL PBL PN 60 JE OL PBL PN 60 JE OL PBL PN 60 JE OLL PBL PN 60 JE OLL PBL PN 60 JE	ALCUTO DOS VOLUMES DE ESCAVAÇÃO E REATERRO EN PUNÇÃO DOS DIÂMETROS PVC - PN 40/80 JE OU PBL PN 60 JE 50.35 75,5 101,6 125,0 170,0 222	ALCULO DOS VOLUMES DE ESCAVAÇÃO E REATERRO EM FUNÇÃO DOS DIÂMETROS PVC - PN 40/80 JE OU PBL PVC 50.35 75,5 100,6 125,0 170,0 222 50,5 75,5 101,6 125,0 170,0 222 0,23 0,21 0,20 0,19 0,17 0,49	ALCULO DOS VOLUMES DE ESCAVAÇÃO E REATERRO EN FUNÇÃO DOS DIÂMETROS PVC - PN 40/80 JE OU PBL P VC 50e 35 75 100 125 150 200 50,5 75,5 101,6 125,0 170,0 222 0,23 0,24 0,20 0,19 0,49 0,63 0,67 0,45 0,52 0,70 0,68 0,63 0,67	ALCULO DOS VOLUMES DE ESCAVAÇÃO E REATERRO EN FUNÇÃO DOS DIÂMETROS PVC – PN 40/80 Je ou PBL P VC 50e 35 75 100 125 150 200 50e 35 75,5 101,6 125,0 170,0 222 30 0,23 0,24 0,20 0,49 0,47 0,49 0,45 0,50 0,50 0,50 0,50 0,70	ALCUILO DOS VOLUMES DE ESCAVAÇÃO E REATERRO EN FUNÇÃO DOS DIÉMETROS PVC - PN 40/80 JE ex. PBL P VC 50235 75,5 101,6 125,0 170,0 200 50,5 75,5 101,6 125,0 170,0 222 0,23 0,21 0,20 0,19 0,49 0,49 0,49 0,45 0,50 0,50 0,50 0,50 0,50 0,70 0,60 0,50 0,80 0,80 0,90 0,10 0,60 0,80 0,80 0,90 0,10	Substant of the properties of t	50,23 75 101,6 125,0 170,0 222 50,435 75 101,6 125,0 170,0 222 0,23 0,21 0,20 0,19 0,49 0,49 0,40 0,60 0,80 0,90 0,90 0,90 0,10 0,30 0,40 0,40 0,45 0,45 0,70 0,50 0,60 0,80 0,90 0,90 0,10 0,30 0,40 0,45 0,45 0,70 0,60 0,90 0,90 0,90 0,10 0,10 0,40 0,45 0,45 0,70	