GOVERNO DO ESTADO DO CEARÁ SECRETARIA DOS RECURSOS HÍDRICOS - SRH

EXECUÇÃO DOS SERVIÇOS DE DETALHAMENTO DOS ESTUDOS BÁSICOS E ELABORAÇÃO DO PROJETO EXECUTIVO E ACOMPANHAMENTO TÉCNICO DA CONSTRUÇÃO

BARRAGEM JOÃO GUERRA MUNICÍPIO DE ITATIRA - CE

TOMO III

MEMORIA DE CÁLCULO

FORTALEZA-CE OUT/2006

ÍNDICE

ÍNDICE

	Paginas
1 - INTRODUÇÃO	4
2 – CÁLCULO DA FOLGA	7
3 - CÁLCULO DA COTA DO COROAMENTO	9
4 - CÁLCULO DA LARGURA DO COROAMENTO	11
5 - ESCOLHA DA INCLINAÇÃO DOS TALUDES	13
6 - DIMENSIONAMENTO DO RIP-RAP	16
7 – DETERMINAÇÃO DA LINHA FREÁTICA	22
7.1 – VAZÃO PELO MACIÇO	25
7.2 – VAZÃO PELA FUNDAÇÃO	26
8 - DIMENSIONAMENTO DO FILTRO VERTICAL	28
9 - DIMENSIONAMENTO DO TAPETE HORIZONTAL	31
10 – ESPECIFICAÇÕES DOS MATERIAIS DO ROCK-FILL	34
11 – ANÁLISE DA ESTABILIDADE	37
11.1 -MÉTODO BIHOP SIMPLIFICADO	39
11.2 - PROGRAMA SLOPE/W	40
11.2.1 – Método de Análise	41
11.2.2 – Geometria e Estratigrafia	41
11.2.3 – Superfície de Escorregamento	41
11.2.4 – Pressão Neutra	41
11.2.5 – Propriedade do Solo	42
11.2.6 – Definição do Problema	43
11.2.7 – Resolução do Problema	44
11.2.8 – Apresentação dos Resultados	44
11.2.9 – Formulário	44
11.3 - RESULTADOS OBTIDOS	46
12 - COTA DO VOLUME MORTO	73
13 - TOMADA D'ÁGUA	75
13.1. DIMENSIONAMENTO HIDRÁULICO DA GALERIA	76

14 - DIMENSIONAMENTO DO SANGRADOURO	82
14.1. PERFIL CREAGER	85
14.2. BACIA DE DISSIPAÇÃO	88
15 - DEMONSTRATIVO DAS QUANTIDADES	90

1 – INTRODUÇÃO

1 - INTRODUÇÃO

A Empresa SLA – Consultoria e Projetos S/C Ltda e a **Secretaria dos Recursos Hídricos do Estado do Ceará** (SRH-CE) celebraram o contrato nº 28/SRH/2002 de 28/09/2002, que tem como objetivo a execução dos serviços de detalhamento dos estudos básicos e elaboração do Projeto Executivo e acompanhamento técnico da construção da Barragem João Guerra no município de Itatira, Ceará.

O EXECUÇÃO DOS SERVIÇOS DE DETALHAMENTO DOS ESTUDOS BÁSICOS E ELABORAÇÃO DO PROJETO EXECUTIVO da Barragem João Guerra é apresentado em dois tomos, a saber:

TOMO 1 - Memorial Descritivo do Projeto

TOMO 2 - Desenhos

TOMO 3 - Memória de Cálculo

TOMO 4 - Especificações Técnicas

TOMO 5 – Quantitativos e Orçamentos

TOMO 6 - Relatório Síntese

O Memorial Descritivo do EXECUÇÃO DOS SERVIÇOS DE DETALHAMENTO DOS ESTUDOS BÁSICOS E ELABORAÇÃO DO PROJETO EXECUTIVO é desenvolvido a seguir abordando os seguintes tópicos:

- Cálculo da Folga
- Cálculo da Cota do Coroamento
- Cálculo da Largura do Coroamento
- Escolha da Inclinação dos Taludes
- Dimensionamento do Rip-Rap
- Determinação da Linha Freática
- Dimensionamento do Filtro Vertical
- Dimensionamento do Tapete Horizontal
- Especificações dos Materiais do Rock-Fill
- Análise de Estabilidade

- Cota do Volume Morto
- Tomada D´Água
- Dimensionamento do Sangradouro

2 - CÁLCULO DA FOLGA

2 - CÁLCULO DA FOLGA

A folga da barragem é a diferença de cota entre o coroamento e o nível máximo das águas. A folga é dada pela expressão:

$$f=0.75h+\frac{V^2}{2q}$$

Onde h é a altura da onda formada pela ação dos ventos sobre o espelho d'água do lago, enquanto h é dado por :

$$h = 0.75 + 0.34F^{1/2} - 0.26F^{1/4} (m)$$
 para F<18Km

$$h = 0.34F^{1/2}(m)$$
 para F > 18Km

Onde:

F = distância máxima (em km) em linha reta entre qualquer extremidade do lago e um ponto qualquer sobre o barramento (fecht).

V = Velocidade da onda em m/s dado pela fórmula:

$$V = 1.5 + 2h(m/s)$$

Para o lago da Barragem Melancia tem-se F = 3,3km, logo:

$$h = 0.75 + 0.34 \times 3.3^{1/2} - 0.26 \times 3.3^{1/4}$$

 $h = 1.02m$

$$V = 1.5 + 2 \times 1.02 = 3.53 m / s$$

$$f = 0.75 \times 1.02 + \frac{3.53^2}{2 \times 9.81} = 1.40m$$

Adotando f = 1,50m

3 - CÁLCULO DA COTA DO COROAMENTO

3 - CÁLCULO DA COTA DO COROAMENTO

A cota do Coroamento da Barragem é dada pela expressão:

$$C_c = C_s + L + F$$

Onde:

 $\boldsymbol{\mathcal{C}}_{\boldsymbol{\mathcal{C}}}=$ Cota do Coroamento.

 C_s = Cota da Soleira = 374,00m.

L = Lâmina vertente na cheia milenar = 2,38m.

f = folga = 1,50m.

$$C_{c} = 374,00 + 2,38 + 1,50 = 377,88m.$$

Adotar 378,50m.

Verificação para a cheia decamilenar.

$$C_{C} - C_{10.000}$$

Onde:

 $C_{10.000}$ = Cota da cheia decamilenar = 374,00+2,83=376,83m.

$$C_{C} - C_{10.000} = 378,00 - 376,83 = 1,17 \, m > 0,50 \, m \Rightarrow OK!$$

Adotou-se a cota de coroamento $C_c = 378,00m$.

4 - CÁLCULO DA LARGURA DO COROAMENTO

4 - CÁLCULO DA LARGURA DO COROAMENTO

Adotando-se a fórmula de Preece à seção de maior altura tem-se:

$$L_{c} = 1.10\sqrt{H_{b}} + 0.9(m)$$

Onde:

 L_c = Largura da barragem (m);

 H_b = Altura da barragem (m).

Para a seção da Estaca 10 tem $H_b = 19,68m$ e

 $L_c = 1.10 \times \sqrt{19.68} + 0.90 = 5.78m$, foi adotado $L_c = 6.0m$.

5 – ESCOLHA DA INCLINAÇÃO DOS TALUDES

5 - ESCOLHA DA INCLINAÇÃO DOS TALUDES

A fixação dos taludes foi resultado de análise da estabilidade. Entretanto foi necessário se fazer uma escolha inicial para em seguida se fazer a análise de estabilidade.

O Bureau of Reclamation sugere as inclinações de taludes, reproduzidas no Quadro nº5.1:

QUADRO N°5.1: INCLINAÇÃO DOS TALUDES - BUREAU OF RECLAMATION				
CASO	SUJEITO A ESVAZIAMENTO RÁPIDO	CLASSIFICAÇÃO DOS SOLOS	MONTANTE	JUSANTE
		GW, GP, SW, SP	Permeável, n	ão adequado
Δ.	A NÃO	GC, GM, SC, SM	2.5:1	2:1
A		CL, ML	3:1	2,5:1
		CH, MH	3,5:1	2,5:1
		GW, GP, SW, SP	Permeável, n	ão adequado
В	B SIM	GC, GM, SC, SM	3:1	2:1
B SIM	SIM	CL, ML	3,5:1	2,5:1
		СН, МН	4:1	2,5:1

Terzaghi apresentou, para efeito de Projeto Executivo, as inclinações aconselháveis que são mostrados no Quadro nº5.2:

QUADRO N°5.2: INCLINAÇÃO DOS TALUDES - TERZAGHI				
TIPO DE MATERIAL	TALUDES			
TIFO DE MATERIAL	MONTANTE	JUSANTE		
Seção Homogênea – Solo bem graduado	1:2,5	1:2		
Seção Homogênea – Silte grosso	1:3	1:2,5		
Seção Homogênea – Argila ou argila siltosa, altura menor que 15m	1:2,5	1:2		
Seção Homogênea – Argila ou argila siltosa, altura maior que 15m	1:3	1:2,5		
Areia ou Pedregulho e Areia com núcleo de argila	1:3	1:2,5		
Areia ou Pedregulho com cortina de concreto armado	1:2,5	1:2		

O engenheiro Paulo Teixeira da Cruz em sua obra 100 Barragens Brasileiras sugere os seguintes taludes preliminares que são mostrados no Quadro nº5.3:

QUADRO N°5.3: INCLINAÇÃO DOS TALUDES - PAULO T. CRUZ				
TIPO DE MATERIAL	MONTANTE	JUSANTE		
Solos Compactados	2:5(H): 1,0(V)	2.0(H) . 1.0(V)		
Solos Compactados	3,0(H): 1,0(V)	2:0(H): 1,0(V)		
Solos Compactados Argilosos	2:0(H): 1,0(V)	2:0(H): 1,0(V)		
	3,0(H): 1,0(V)	2,5(H): 1,0(V)		
Solos Compactados Siltosos	3,5(H): 1,0(V)	3,0(H): 1,0(V)		
Enrocamentos	1:3(H): 1,0(V)	1:3(H): 1,0(V)		
	1,6(H): 1,0(V)	1,6(H): 1,0(V)		

Os solos das Jazidas são do tipo SC ou do tipo SM, portanto analisando as tabelas juntamente com os materiais que serão usados na construção adotouse para análise os taludes de Montante de 1:2,5 (V:H) e Jusante de 1:2 (V:H) com berma de 2,0m de largura na cota 370,00m.

6 - DIMENSIONAMENTO DO RIP-RAP

6. DIMENSIONAMENTO DO RIP-RAP

Bourdeaux (1979) recomenda um rip-rap com as seguintes características, quando a altura de onda for inferior a 1,20m.

$$D_{50\%} = 0.38 \text{ m}$$

$$P_{max} = 680 \text{ kg}$$

Esp. =
$$0.61 \, \text{m}$$

Será adotado um rip-rap de espessura de 0,70m.

a) Os blocos empregados na construção do rip-rap devem ter no mínimo 50% de pedras com peso igual a:

$$P_{50\%} = 0.52 \cdot \gamma \cdot e^3$$

Onde:

P_{50%} = Peso do bloco de rocha que compõem 50% do rip-rap (tf);

 γ = Peso específico da rocha = 2,50 tf/m³;

e = Espessura do rip-rap em (m).

Portanto tem-se:

$$P_{50\%} = 0.52 \times 2.5 \times 0.70^3 = 0.45 \,\mathrm{tf}$$

b) Os blocos de enrocamento do rip-rap devem ter no mínimo 50% de pedras com o diâmetro igual a:

$$D_{50\%} = \left(\frac{P_{50\%}}{0.75\gamma}\right)^{1/3}$$

Onde:

 $\boldsymbol{\mathcal{D}_{50\%}}$ = diâmetro do bloco de rocha que compõem 50% do rip-rap

Logo:

$$D_{50\%} = \left(\frac{0.45}{0.75 \times 2.50}\right)^{1/3} : D_{50\%} = 0.62m$$

c) O diâmetro e o peso do bloco mínimo:

$$P_{min} = 0.25 P_{50\%} = 0.25 \times 0.45 \therefore P_{min} = 0.11 f$$

$$D_{min} = \left(\frac{P_{min}}{0.75 \gamma}\right)^{1/3} = \left(\frac{0.11}{0.75 \times 2.50}\right)^{1/2} \therefore D_{min} = 0.39 min$$

d) O diâmetro e o peso máximo do bloco.

$$P_{m\acute{a}x} = 4P_{50\%} = 4 \times 0.45 : P_{m\acute{a}x} = 1.80tf$$

$$D_{m\acute{a}x} = \left(\frac{P_{50\%}}{0.75\gamma}\right)^{1/3} = \left(\frac{1.80}{0.75 \times 2.50}\right)^{1/3} : D_{m\acute{a}x} = 0.98m$$

Como $D_{m\acute{a}x}$ calculado foi maior do que a espessura, será adotado $D_{m\acute{a}x} = e = 0.70m$. Assim sendo:

$$P_{m\acute{a}x} = 0.75 \gamma$$
 $D_{m\acute{a}x}^{3} = 0.75 \times 2.50 \times (0.70)^{3}$: $P_{m\acute{a}x} = 0.64 tf$

Segundo Cruz (1996), a espessura mínima da transição em enrocamentos sem finos deve ser, em função da altura de onda de:

ALTURA DE ONDA (m)	ESPESSURA TRANSIÇÃO (m)
0,00 - 1,20	0,15
1,20 - 2,40	0,25
2,40 - 3,00	0,30

Adotou-se a espessura de transição de 0,20m.

O rip-rap será assente sobre uma camada de transição com 0,20m de espessura obtida de produto de britagem, atendendo aos seguintes requisitos:

➤ Material Filtrante x Solo Compactado

$$\left(\mathcal{D}_{15}\right)_{filtro} \leq \mathbf{5} \times \left(\mathcal{D}_{85}\right)_{solo}$$

Material Filtrante x Rip-Rap

Bourdeaux (1979) recomenda:

25 mm
$$<$$
 (D_{85})_{filtro} $<$ 5 / mm e 0,2 mm $<$ D_{min} $<$ 0,6 mm.

> Apresentar curvas granulométricas aproximadamente paralelas.

A faixa granulométrica do solo compactado do maciço foi obtida pela média aritmética dos resultados dos ensaios de granulometria por peneiramento e dos ensaios de granulometria por sedimentação realizados em amostras das jazidas J-01, J-02, J-03 e J-04.

Tem-se:

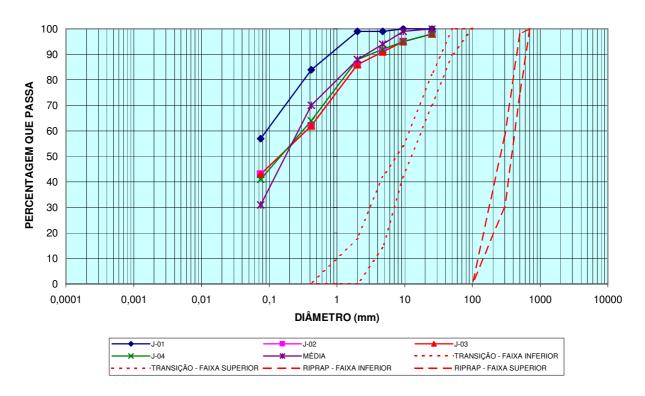
$$(D_{15})_{maciço} = 0.022 mm$$

$$(D_{85})_{maciço} = 1,2mm$$

Com essas informações, e recorrendo-se ao traçado das curvas granulométricas obtém o material de transição que deve ser produzido de britagem de rochas de pedreira.

QUADRO N°6.1: MATERIAL DE TRANSIÇÃO			
PENI	EIRA	FAIXA GRANULOMÉTRICA	
#	mm	(PERCENTAGEM QUE PASSA)	
-	200	100	
-	100	100	
2"	50,8	90-100	
1"	25,4	70-82	
3/8"	9,5	42-54	
Nº 4	4,76	14-42	
Nº 10	2,00	0-18	
Nº 40	0,42	0	
Nº 100	0,15	0	

O material do rip-rap deve ser produzido com a seguinte granulometria:


QUADRO Nº6.2: MATERIAL DO RIP-RAP

PENEIRA		FAIVA CRANIII OMÉTRICA
#	mm	
-	700	100
-	500	74-98
-	300	4-58
-	100	0

Na Figura Nº6.1 é apresentado a curva granulométrica do maciço, da transição e do rip-rap.

CURVA GRANULOMÉTRICA: MACIÇO - TRANSIÇÃO - RIPRAP

Verificação por Bertram (1940):

1) Maciço x Transição:

Maciço
$$D_{15} = 0.022 mm$$

 $D_{85} = 1.2 mm$

Transição
$$D_{15} = 3.0$$
mm $D_{85} = 35.0$ mm

$$\frac{D_{15}(transi\tilde{gao})}{D_{85}(maci\tilde{gao})} < 4 : \frac{3.0mm}{1.2mm} = 2.5 < 4 \Rightarrow OK!$$

$$\frac{D_{15}(transi\tilde{gao})}{D_{15}(maci\tilde{gao})} > 5 : \frac{3.0mm}{0.022mm} = 136.4 >> 5 \Rightarrow OK!$$

2) Transição x Rip-Rap

Transição
$$D_{15} = 3.0$$
 mm $D_{85} = 35.0$ mm

Rip-Rap
$$D_{15} = 120 mm$$

 $D_{85} = 410 mm$

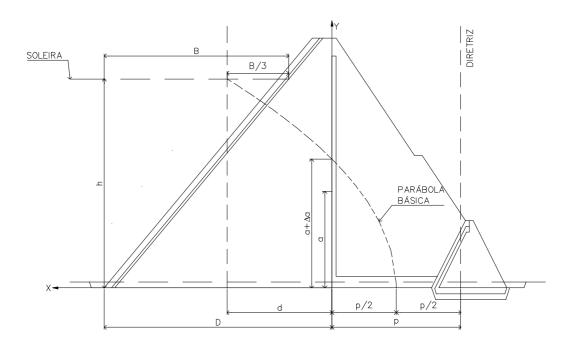
$$\frac{D_{15}(rip-rap)}{D_{85}(transição)} < 4 : \frac{120mm}{35,0mm} = 3,4 < 4 \Rightarrow OK!$$

$$\frac{D_{15}(rip-rap)}{D_{15}(transigão)} > 5 : \frac{120mm}{3,0mm} = 40 >> 5 \Rightarrow OK!$$

7 – DETERMINAÇÃO DA LINHA FREÁTICA

7. DETERMINAÇÃO DA LINHA FREÁTICA

O fluxo d'água através do corpo da barragem de terra é limitado superiormente por uma linha de percolação, denominada linha de saturação. Para o traçado da linha de saturação teórica, utilizou-se a teoria de KOZENY, dado pela expressão:


$$p = \sqrt{x^2 + y^2} - x$$

Admitindo o problema de anisotropia, admitiu-se a redução da escala horizontal antes do traçado da linha de saturação e da rede de fluxo, na relação 3 (três), ou seja, a relação entre a permeabilidade horizontal e a permeabilidade vertical é igual a 9. Desta forma:

$$\frac{K_h}{K_v} = 9$$

Na Figura N°7.1 é apresentado a linha de saturação na escala transformada.

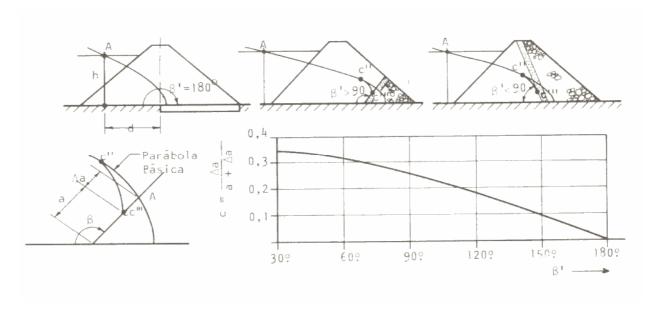
PARABOLA DE KOZENY - SEÇÃO TRANSFORMADA

Para a construção da parábola básico, utilizando a teoria de KOZENY, seguiu-se a seguinte marcha de cálculo:

$$B = 13.87$$
, $d = 8.78$, $h = 15.67$

$$p = \sqrt{h^2 + d^2} - d = \sqrt{15.67^2 + 8.78^2} - 8.78 : p = 9.18$$

Parábola básica:
$$\sqrt{x^2 + y^2} - x = p$$
 : $y^2 = (x + p)^2 - x^2$


$$y^2 = (x + 9.18)^2 - x^2$$

LINHA DE SATURAÇÃO TEÓRICA					
PONTO	ж	y	PONTO	х	y
1	-4,59	0,00	9	3,00	11,80
2	-4,00	3,29	10	4,00	12,56
3	-3,00	5,40	11	5,00	13,27
4	-2,00	6,90	12	6,00	13,94
5	-1,00	8,12	13	7,00	14,59
6	0,00	9,18	14	8,00	15,20
7	1,00	10,13	15	8,78	15,67
8	2,00	11,00	-	-	-

A concordância da linha de saturação no lado de montante é feita a sentimento, notando-se que ela é normal ao talude de montante, pois este, abaixo do N.A, é uma linha equipotencial.

A interceptação da linha de saturação no filtro vertical é mais baixo que o ponto onde a parábola teórica atinge o filtro. A correção da entrada da linha freática no filtro é dado por:

Desta forma:

$$\frac{\Delta a}{a + \Delta a} = 0.25 : \Delta a = 0.25(a + \Delta a)$$

Como $\Delta a + a = 9,18$, tem-se:

$$\Delta a = 0.25 \times 9.18 : \Delta a = 2.30$$

Logo: **a** = **6,88m**

A concordância da entrada da linha freática no filtro é traçada a sentimento.

7.1 - VAZÃO PELO MACIÇO

A partir da linha de saturação associada à parábola teórica de KOZENY e fazendo as correções de contorno, pode-se determinar a vazão por metro de Barragem pela expressão:

$$q = K_E \cdot Q$$

Os coeficientes de permeabilidade vertical, obtido nos ensaios de permeabilidade de carga variável do maciço, são:

COEFICIENTE DE PERMEABILIDADE VERTICAL					
JAZIDA	J-01	J-02	J-03	J-04	MÉDIA
K (cm/s)	4,1x10 ⁻⁷	5,9x10 ⁻⁷	4,8x10 ⁻⁷	3,3x10 ⁻⁷	4,5x10 ⁻⁷

O coeficiente de permeabilidade vertical adotado será a média dos valores médios encontrados nas jazidas J-01, J-02, J-03 e J-04. Assim sendo, $K_V = 4.5 \times 10^{-7} \, \text{cm} \, / \, \text{s}$.

A abscissa na escala transformada é 1/3 da abscissa na escala natural. Como a relação entre as abscissas deve ser igual à raiz quadrada da relação dos coeficientes de permeabilidade, tem-se:

$$\sqrt{\frac{K_{V}}{K_{H}}} = \frac{1}{3} : \frac{K_{V}}{K_{H}} = \frac{1}{9}$$

$$K_{H} = 9K_{V} = 9 \times 4.5 \times 10^{-7}$$

$$K_{H} = 4.1 \times 10^{-6} \text{ cm / s}$$

O coeficiente equivalente do meio anisotrópico é igual à média granulométrica dos coeficientes nas duas direções, logo:

$$K_{E} = \sqrt{K_{V} \cdot K_{H}} = \sqrt{4.5 \times 10^{-7} \cdot 4.1 \times 10^{-6}}$$
 $K_{E} = 1.4 \times 10^{-6} \text{ cm / s}$
 $K_{E} = 1.4 \times 10^{-8} \text{ m / s}$

Desta forma, a vazão pelo maciço, por um metro de largura de Barragem é:

$$q = (1.4 \times 10^{-8} \, \text{m} / \text{s}) \cdot (6.88)$$

 $q = 9.6 \times 10^{-8} \, \text{m} / \text{s} \cdot \text{m}$

7.2 – VAZÃO PELA FUNDAÇÃO

A vazão pela fundação é formada pelas águas que percolam pelo cut-off e abaixo do cut-off. Devido a impermeabilidade do maciço abaixo do cut-off considerou-se apenas as águas que passam pelo cut-off considerou-se, ainda, que toda a carga será perdida no cut-off. Logo a vazão pela fundação será dada pela expressão:

$$Q_F = K \cdot I \cdot A$$

Onde:

$$\mathbf{K} = \sqrt{\mathbf{K_y} \cdot \mathbf{K_x}} = \text{Vazão do maciço de fundação (m/s)}$$

I = Gradiente hidráulico (m/m)

$$\mathbf{A} = \mathbf{h} \times \mathbf{1}, \mathbf{0} = \text{Area normal ao fluxo } (m^2/m)$$

h = Profundidade do cut-off na seção examinada (m)

O gradiente hidráulico é obtido através da relação entre a carga hidráulica e o comprimento médio percolado ${m L}$.

Para:
$$\Delta H = 17,87m \text{ e } L = 6,00m$$
.

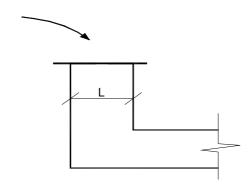
Obtem-se:

$$i = \frac{17,87}{6,00} = 2,98m / m$$

Para
$$K = 1.4 \times 10^{-8} \, \text{m} / \text{s}$$

Obtem-se:

$$Q_F = 1.4 \times 10^{-8} \times 2.98 \times 4.0 \times 1.0$$


$$Q_F = 1.7 \times 10^{-7} \, \text{m}^3 \, / \, \text{s} \, / \, \text{m}$$

8 - DIMENSIONAMENTO DO FILTRO VERTICAL

8. DIMENSIONAMENTO DO FILTRO VERTICAL

$$Q = K \cdot i \cdot A$$

$$A = L \times 1.0m$$

$$i = 1.0$$

Como o filtro vertical será construído com areia grossa, o seu coeficiente de permeabilidade obtido no ensaio de permeabilidade com carga constante foi $K = 4.8 \times 10^{-3} \, \text{cm} \, / \, \text{s} : \left(4.8 \times 10^{-5} \, \text{m} \, / \, \text{s}\right)$. A vazão pelo maciço é de $9.6 \times 10^{-8} \, \text{m} \, / \, \text{s} \, / \, \text{m}$ Logo:

$$Q = K \cdot i \cdot L$$

$$L = \frac{Q}{K \cdot i} = \frac{9.6 \times 10^{-8}}{4.8 \times 10^{-5} \times 1.0} \therefore L = 0.002m$$

Adotou-se $\boldsymbol{L} = \boldsymbol{1,0m}$ por questões construtivas, principalmente porque indicase a construção do filtro através da escavação de camada de solo já executada.

O material do filtro vertical atende aos seguintes requisitos de Bertram (1940):

Maciço
$$D_{15} = 0.022 mm$$

 $D_{85} = 1.2 mm$

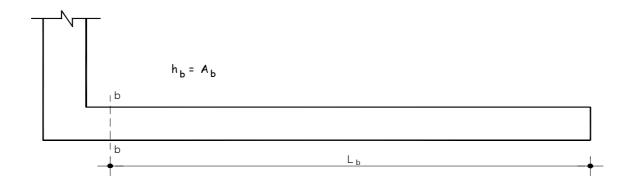
Areia
$$D_{15} = 0.2 \, mm$$

 $D_{85} = 5.0 \, mm$

1)
$$\frac{D_{15(filtro)}}{D_{85(maciço)}} < 4 : \frac{O,2mm}{1,2mm} = 0,17 < 4 \Rightarrow OK!$$

2)
$$\frac{D_{15(filtro)}}{D_{15(maciço)}} > 5 \therefore \frac{O,2mm}{O,022mm} = 9,1 > 5 \Rightarrow OK!$$

As curvas granulométricas são apresentadas na Figura Nº10.1.


9 - DIMENSIONAMENTO DO TAPETE HORIZONTAL

9. DIMENSIONAMENTO DO TAPETE HORIZONTAL

A vazão na seções final do tapete é de $2.7 \times 10^{-7} \, m^3 \, / \, s \, / \, m$, incluindo a vazão pelo maciço e mais a vazão pela fundação, ou seja:

$$Q_{maciço} = 9.6 \times 10^{-8} \, \text{m}^3 \, \text{/s/m}$$
 $Q_{fundação} = 1.7 \times 10^{-7} \, \text{m}^3 \, \text{/s/m}$ $Q_{total} = 2.7 \times 10^{-7} \, \text{m}^3 \, \text{/s/m}$

$$L_b = 45,00m$$

$$K_b = \frac{Q}{i \cdot A_b}$$

$$h_b = A_A$$

$$i = \frac{h_b}{L_b}$$

$$K_b = \frac{Q_b}{\left(\frac{h_b}{L_b}\right) \cdot A_b} = \frac{Q_b \cdot L_b}{h_b}$$

$$h_b^2 = \frac{Q_b \cdot L_b}{K_b}$$

$$h_b = \sqrt{\frac{2,7 \times 10^{-7} \times 45,00}{4,8 \times 10^{-5}}} = 0,50m$$

Foi adotado 1,0m de tapete drenante.

O material do tapete horizontal atende os seguintes requisitos de Bertram (1940).

1)
$$\frac{D_{15(tapete)}}{D_{85(macico)}} < 4 : \frac{O,2mm}{1,2mm} = 0,17 < 4 \Rightarrow OK!$$

2)
$$\frac{D_{15(tapete)}}{D_{15(macigo)}} > 5 \therefore \frac{O,2mm}{O,022mm} = 9,1 > 5 \Rightarrow OK!$$

As curvas granulométricas são apresentadas na Figura Nº10.1.

10 - ESPECIFICAÇÕES DOS MATERIAIS DO ROCK-FILL

10. ESPECIFICAÇÕES DOS MATERIAIS DO ROCK-FILL

Os materiais constituintes do rock-fill foram especificados para que as camadas deixem passar a água, impedindo a migração dos grãos do solo. Para tanto, utilizou-se os princípios de Bertram (1940).

A camada de transição entre o tapete horizontal e o enrocamento do rock-fill, será executado com 0,20m de espessura de um material proveniente do produto de britagem, denominado de Brita "A", atendendo aos seguintes requisitos:

$$1) \,\, \frac{\textit{\textbf{D}}_{\textit{15(brita-A)}}}{\textit{\textbf{D}}_{\textit{85(tapete)}}} \, < \, \textit{\textbf{4}}$$

2)
$$\frac{D_{15(brita-A)}}{D_{15(tapete)}} > 5$$

3) Apresentar curvas granulométricas aproximadamente paralelas.

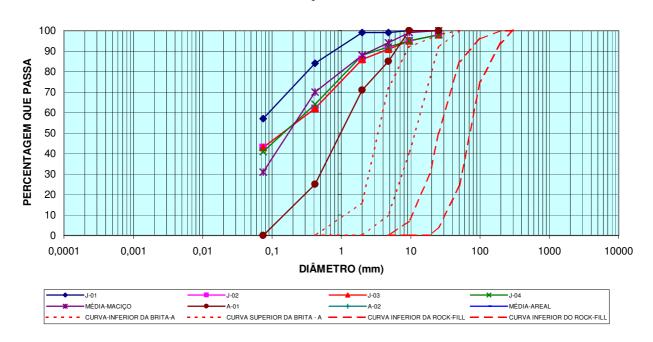
Assim sendo, a Brita "A" será executada com a seguinte composição granulométrica:

FAIXA GRANULOMÉTRICA: BRITA "A"				
DIÂME	ETRO	CURVA		
#	mm	% QUE PASSA		
2"	50,8	100		
1"	25,4	92-98		
3/8"	9,5	40-92		
N°4	4,76	10-72		
Nº10	2,00	0-16		
N°40	0,42	0		

O enrocamento do rock-fill deverá atender os seguintes critérios:

$$1) \,\, \frac{\textit{\textbf{D}}_{\textit{15}(\textit{rock-fill})}}{\textit{\textbf{D}}_{\textit{85}(\textit{brita-A})}} < \textit{\textbf{4}}$$

$$2) \; \frac{\mathbf{D}_{15(rock-fill)}}{\mathbf{D}_{15(brita-A)}} > 5$$


3) Apresentar curvas granulométricas aproximadamente paralelas.

Desta forma, o enrocamento do rock-fill será executado com a seguintes composição granulométrica:

FAIXA GRANULOMÉTRICA: ENROCAMENTO DO ROCK-FILL					
DIÂME	TRO	CURVA			
#	mm	% QUE PASSA			
	300	100			
	200	94-100			
	100	75-96			
2"	50,8	24-85			
1"	25,4	4-50			
3/4"	19,1	0-30			
3/8"	9,5	0-7			
N°4	4,76	0			

As curvas granulométricas do sistema de drenagem interna são mostradas na Figura N°10.1, a seguir:

CURVA GRANULOMÉTRICA: MACIÇO/FILTRO-TAPETE/BRITA-A/ ROCK-FILL

11 - ANÁLISE DA ESTABILIDADE

11. ANÁLISE DA ESTABILIDADE

A análise da estabilidade foi feita utilizando-se Método de Bishop Modificado e o programa Geo-Slope/W.

A geometria da Barragem João Guerra foi avaliada de duas maneiras, a saber: a análise de estabilidade estática e sísmica.

A análise da estabilidade estática foi realizada recorrendo-se ao método de equilíbrio limite, proposto por Bishop implementado automaticamente através do programa de cálculo SLOPE/W.

Os cálculos da estabilidade foram realizados sobre a seção mais condicionante no que concerne a estabilidade da barragem, ou seja, a seção de maior altura, tendo sido analisado as seguintes situações.

- a) Final de Construção taludes de montante e jusante;
- b) Reservatório Cheio (a longo prazo) talude de jusante;
- c) Rebaixamento Rápido talude de montante.

A análise da estabilidade sísmica foi efetuada através de um método pseudoestático recorrendo-se ao Método de Bishop Simplificado, também implementado pelo programa SLOPE/W.

No que diz respeito à caracterização da ação sísmica, foi adotado, para a situação de final de construção, regime permanente e rebaixamento rápido, um coeficiente sísmico de 0,10.

Quanto a obtenção das pressões neutras adotaram-se os seguintes procedimentos:

a) Adoção do Coeficiente R_u

Para a situação de final de construção adotou-se o coeficiente R_u . Este coeficiente é definido como a relação entre a pressão intersticial da água num determinado ponto com a tensão vertical nesse ponto através da expressão $R_u = U/\sigma_1$. Esse coeficiente é função do tipo do material. Para materiais de elevada permeabilidade nos quais a dissipação das pressões intersticiais é

quase instantânea, o coeficiente toma valores próximos de zero. No limite, o coeficiente Ru pode atingir 0,50 caso se esteja na presença de materiais saturados de baixa permeabilidade.

b) Definição da Linha Piezométrica

Para os casos de regime permanente e rebaixamento rápido, as pressões neutras foram obtidas a partir do traçado da linha piezométrica cujos pontos determinou-se associando a linha freática à parábola de Kozeny teórica fazendo as correções de contorno.

A anisotropia do solo foi contemplada considerando uma relação igual a 9 entre os coeficientes de permeabilidade horizontal/vertical.

c) Parâmetros de Resistência dos Materiais

O Quadro nº11.1 mostrado a seguir, indica os valores dos parâmetros geotécnicos adotados para a análise da estabilidade da barragem.

QUADRO N°11.1: PARÂMETROS GEOTÉCNCOS					
Material	Material γ (kN/m ³) C (kPa) ϕ (graus)				
Riprap	18,0	0,00	45°	0,00	
Maciço e Cut-Off	20,2	15,0	30°	0,10	
Filtro / Tapete	18,0	0,00	35°	0,00	
Rock-fill	20,0	0,00	38°	0,00	
Aluvião	17,0	10,0	28°	0,10	
Solo Residual	21,0	7,0	35°	0,00	

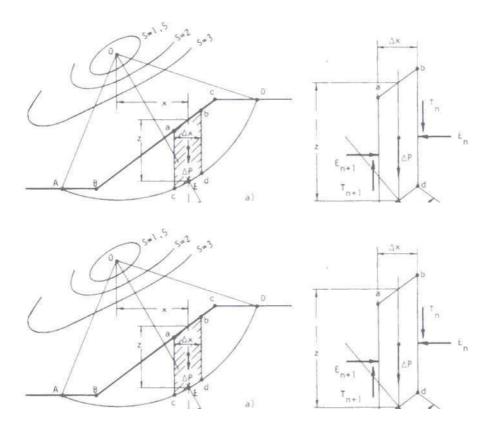
11.1 - MÉTODO BIHOP SIMPLIFICADO

Em 1955 Bishop generalizou o método das fatias para levar em conta o efeito dos empuxos e cisalhamento ao longo das faces laterais das fatias.

Nesse método é feito, também, o equilíbrio dos momentos em torno do centro do circulo de ruptura.

O coeficiente de segurança é dado pela expressão:

$$oldsymbol{S} = rac{oldsymbol{1}}{\sum \Delta oldsymbol{P} oldsymbol{\sin lpha}} imes \Sigma \cdot oldsymbol{C'} \cdot \Delta oldsymbol{X} + oldsymbol{t} oldsymbol{g} \phi' \cdot \Delta oldsymbol{P} ig(oldsymbol{1} - \overline{oldsymbol{B}} ig) \cdot rac{oldsymbol{\sec lpha}}{oldsymbol{1} + rac{oldsymbol{t} oldsymbol{g} \phi' \cdot oldsymbol{t} oldsymbol{g} lpha}{oldsymbol{S}_{\mathbf{0}}}$$



Onde:

C' = coesão efetiva.

 ϕ' = ângulo de atrito interno efetivo.

Os demais elementos são mostrados na figura abaixo:

ESTABILIDADE DE TALUDES (MÉTODO DAS FATIAS E DE BISHOP)

11.2 - PROGRAMA SLOPE/W

O SLOPE/W é um programa computacional que utiliza a Teoria do Estado do Limite de Equilíbrio para calcular o fator de segurança dos taludes de solos e de rochas.

Será feita uma descrição sumária do programa SLOPE/W, abordando os seguintes tópicos, a saber:

- > Métodos de Análise;
- ➤ Geometria e Estratigrafia;
- > Superficie de Escorregamento;

- Pressão Neutra;
- > Propriedade do Solo;
- Definição do Problema;
- ➤ Resolução do Problema;
- Apresentação dos Resultados;
- > Formulário.

11.2.1 - Método de Análise

O SLOPE/W possui a capacidade de determinar o fator de segurança dos problemas de estabilidade de taludes, por uma variedade de métodos a saber: Feldenius, Bishop Simplificado, Janbu Simplificado, Spencer, Mongenstern-Price, Corps of Engeneers, GLE (Limite de Equilíbrio Geral) e Elementos Finitos.

11.2.2 - Geometria e Estratigrafia

O SLOPE/W pode ser usado para modelar uma ampla variação de geometria de taludes e estratigrafia tal como múltiplos tipos de solos, parcialmente submerso em água, várias espessuras e substrato descontinuo camadas de solos impermeáveis e secos ou saturados, tensões de ruptura. As tensões de quebra podem ser modeladas especificando a linha de tensão de ruptura ou o máximo ângulo de inclinação da superficie de escorregamento.

11.2.3 - Superfície de Escorregamento

O SLOPE/W usa uma grade para os centros de rotação e um campo para os raios, para modelos de superfície de escorregamento circulares ou compostos.

11.2.4 - Pressão Neutra

O SLOPE/W possui algumas opções para especificar a pressão neutra, a saber:

- ➤ Coeficiente da pressão neutra: Definição do coeficiente <u>ru</u> para cada tipo específico de solo;
- ➤ **Superfície Piezométrica:** O caminho fácil para especificar a pressão neutra é definir a superfície piezométrica que ultrapassa o domínio do problema;
- > Parâmetros de Pressão Neutra em Locais Específicos: Se os parâmetros de pressão neutro, tal como pressão, linha de

saturação ou <u>ru</u> são conhecidos em uma dada localização especifica do solo, eles podem ser especificados no modelo;

➤ Isolinhas de Pressão Neutra: Se isolinhas de pressão neutra são conhecidas, talvez vindas de observações de campo ou de outra forma, como o modelo de rede de fluxo, as pressões neutras podem ser incorporadas do modelo em estudo para analisar a estabilidade do talude.

11.2.5 - Propriedade do Solo

O SLOPE/W possui os seguintes modelos para definir o solo:

- ➤ Parâmetros da Pressão Total e/ou Efetiva: Os parâmetros de Mohr-Colomb para coesão e ângulo de atrito são os mais comuns meios de modelar os solos sobre tensão cisalhante;
- ➤ Tensão Cisalhante em Solos Não-Drenados: Solos não-drenados exigem resistência ao cisalhamento com atrito nulo;
- ➤ Material com Tensão de Cisalhamento Nulo: Para materiais que contribuem somente com o seu peso, mas não contribuem para a tensão cisalhante do sistema;
- ➤ Material Impenetrável: Onde a superficie de escorregamento encontra um material impenetrável, tal como um topo rochoso, a superficie de escorregamento continua ao longo do limite superior do material impenetrável;
- ➤ Envoltória da Ruptura Bilinear: Uma envoltória da ruptura bilinear de Mohr-Coulomb é útil para modelar materiais que exigem uma mudança no ângulo de atrito, em particular na tensão normal;
- > Incremento Coesa com а Profundidade: Em solos normalmente consolidados solos ou em levemente nãoconsolidados, a coesão é aumentada com a profundidade. O SLOPE/W pode acomodar esta situação de duas maneiras. A primeira maneira é permitindo a coesão variar junto com a profundidade abaixo do topo da camada de solo. Isto é usado para a análise de taludes naturais. A segunda maneira é permitir a coesão variar da elevação, independente em função

profundidade do topo da cômoda. Isto é usado para a análise de taludes de escavação;

- ➤ Anisotropia na Força Cisalhante: O SLOPE/W tem uma inúmera maneiras para modelar a anisotropia dos parâmetros da tensão cisalhante, refletindo na variação da prática da engenharia utilizada ao longo do mundo.
- ➤ Envoltória da Tensão Cisalhante: Nos casos onde a envoltória de ruptura de Mohr-Coulomb linear ou bilinear são insufucientes para modelar a tensão cisalhante do solo, o SLOPE/W tem a capacidade de especificar uma curva geral relacionando a tensão cisalhante e a tensão normal. Isto é a forma mais genérica de especificar a tensão cisalhante.
- ➤ Tensão Cisalhante Baseada na Tensão Normal com a Força Não-Drenada Máxima: Junto com este modelo, a tensão cisalhante é baseada na coesão e no ângulo de atrito para a força nãodrenada máxima. Tanto a coesão e o ângulo de atrito podem variar junto com a profundidade da superfície do terreno ou junto com a elevação acima do datum;
- ➤ Tensão Cisalhante Baseado na Sobrecarga da Pressão Efetiva: A tensão cisalhante do solo neste modelo é diretamente relacionada com a pressão efetiva de sobrecarga por um fator específico, por isso aumenta linearmente junto com a profundidade abaixo da superfície do terreno.

11.2.6 - Definição do Problema

O SLOPE/W inclui um programa executável denominado <u>DEFINE</u>, o qual define o modelo do problema para analisar a estabilidade de talude.

O programa <u>DEFINE</u> desenha o problema na tela, muito semelhante aos desenhos criados usando pacotes de programas CAD (desenho ajudado por computador).

Para definir o problema, começa definindo o espaço do desenho. Isto é feito escolhendo o tamanho do papel, a escala e a origem do sistema de coordenadas da página. Valores padrões são avaliados para todos estes ajustes. Para

orientação quando está desenhando, eixos de coordenadas e grade de pontos de coordenadas podem ser mostrados.

Quando o espaço de desenho é definido, pode-se começar a rascunhar o problema na página usando linhas, círculos e arcos. Pode-se adicionalmente importar uma figura de pano de fundo para representar alguma função. Tendo um rascunho ou figura do domínio do problema, ajuda para definir a estratigrafia do problema de talude.

Depois de definido o espaço do desenho e mostrado o domínio do problema, pode-se especificar a propriedade dos materiais, definir a geometria do talude junto com pontos e linhas, definindo a superfície de escorregamento de teste, especificando as condições de pressão neutra e as condições de aplicação de cargas.

11.2.7 - Resolução do Problema

Uma vez o arquivos de dados criado no programa <u>DEFINE</u> o problema é resolvido utilizando o programa SOLVE.

11.2.8 - Apresentação dos Resultados

O programa CONTOURN é utilizado para visualizar os resultados, onde graficamente são mostrados todas as superfícies de escorregamento em teste e os fatores de segurança calculados pelo programa SOLVE. Os resultados podem ser apresentados como isolinhas de fator de segurança, diagramas de força e polígonos de forças de fatias individuais, gráficos de parâmetros calculados ao longo da superfície de escorregamento e a distribuição probabilística do fator de segurança.

11.2.9 - Formulário

O SLOPE/W é formulado em termos de duas equações de fator de segurança. Estas equações são usadas para calcular o fator de segurança baseado no momento da fatia e na força de equilíbrio. Dependendo da função da força entre fatias adaptada, o fator de segurança de todos os métodos podem ser determinados destas duas equações.

Uma diferença chave entre os métodos é a admissão de hipótese com respeito as forças normais e de cisalhamento entre fatias. A relação entre as forças de interfatias é representada pelo parâmetro λ . Por exemplo, o valor de λ de zero significa que não há força de cisalhamento entre as fatias. O valor de λ diferente de zero significa que há força de cisalhamento entre as fatias.

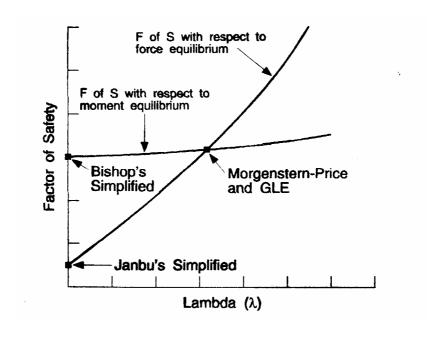


FIGURA N°11.1: FATOR DE SEGURANÇA X LAMBDA

Na Figura N:11.1 apresenta o gráfico do fator de segurança versus λ . Duas curvas são mostradas na figura. Uma curva representa o fator de segurança em relação com o momento de equilíbrio e a outra curva representa o fator de segurança com relação a força de equilíbrio. No Método Bishop Simplificado usa-se a força normal, mas não força de cisalhamento entre as fatias (λ =0) e somente satisfaz o momento de equilíbrio. Conseqüentemente, o fator de segurança Bishop está no eixo vertical da esquerda do gráfico. No método Janbu Simplificado também utiliza-se a força normal, mas não há força de cisalhamento entre as fatias e satisfaz somente a força de equilíbrio. O fator de segurança Janbu é, por isso, também localizado no eixo vertical da esquerda do gráfico. Nos métodos Morgenstern-Price e GLE utilizam-se ambos as forças normal e de cisalhamento entre as fatias e ambas satisfazem a força e o momento de equilíbrio; o resultado do fator de segurança é igual ao valor da interseção das duas curvas de fator de segurança. Na Figura N°11.1 mostra

como geralmente a formulação do SLOPE/W possibilita calcular o fator de segurança dos vários métodos.

11.3 - RESULTADOS OBTIDOS

Após o processamento do programa SLOPE/W foram obtidos os seguintes resultados:

a) Análise da Estabilidade Estática

Os valores dos fatores de segurança obtidos na análise de estabilidade estática são mostrados no Quadro nº11.2:

QUADRO N° 11.2: ANÁLISE DE ESTABILIDADE – ESTÁTICA					
SIMULAÇÃO	c.s.	SUPERFÍCIE DE DESLIZAMENTO			
SIMULAÇAO	MÍNIMO	SUPERFICIAL	INTERMEDIÁRIA	PROFUNDA	
Final de Construção – Talude de Montante	1,3	2,237	1,820	1,805	
Final de Construção – Talude de Jusante	1,3	2,030	1,667	1,670	
Reservatório Cheio – Talude de Jusante	1,5	2,030	1,670	1,505	
Esvaziamento Rápido – Talude de Montante	1,1	1,614	1,150	1,193	

Quanto aos coeficientes de segurança resultantes da análise de estabilidade, verifica-se que estão todos acima dos valores mínimos sugeridos.

b) Análise Sísmica

Os cálculos efetuados para simular um abalo sísmico foram feitos considerando o corpo da barragem como rígido, sendo que a caracterização da Sísmica se dá através do valor da aceleração máxima esperada na fundação. Esta é considerada constante ao longo do perfil da barragem. Este procedimento é adequado tendo em vista a pequena sísmicidade da região. Os valores dos fatores de segurança obtidos são mostrados no Quadro nº11.3:

QUADRO N°11.3: ANÁLISE DE ESTABILIDADE – ABALO SÍSMICO				
SIMULAÇÃO	c.s.	SUPERFÍCIE DE DESLIZAMENTO		

		SUPERFICIAL	INTERMEDIÁRIA	PROFUNDA
Final de Construção – Talude de Montante	1,0	1,714	1,411	1,409
Final de Construção – Talude de Jusante	1,0	1,580	1,329	1,331
Reservatório Cheio – Talude de Jusante	1,0	1,580	1,323	1,196
Esvaziamento Rápido – Talude de Montante	1,0	1,268	1,010	1,026

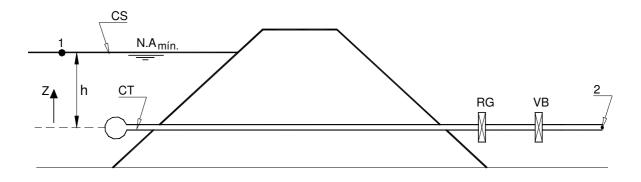
Quanto aos coeficientes de segurança resultantes da análise de estabilidade, verifica-se que estão todos acima dos valores mínimos sugeridos.

12 - COTA DO VOLUME MORTO

12. COTA DO VOLUME MORTO

A cota do volume morto foi definida em 365,00m acumulando 0,29hm³ correspondente à cerca 6,5% do volume máximo.

13 - TOMADA D'ÁGUA



13. TOMADA D'ÁGUA

A tomada d'água ficará localizada na estaca 13 cujo terreno natural está na cota 363,86m. A tomada d'água terá extensão de 84,00m. A galeria será em tubo de Aço ASTM com chapa 1/4" com diâmetro ϕ = 300mm. O corpo da galeria será envolto em concreto armado. O eixo da tubulação ficará na cota 362,50m.

Na extremidade de montante terá uma caixa de concreto armado com uma grade de retenção. Em jusante terá também uma caixa com três células, o primeiro acomodará a válvula borboleta e um registro de gaveta. A segunda é um dissipador de energia. Finalmente a terceira célula é um tanque tranqüilizador com um vertedouro triangular na extremidade.

13.1. DIMENSIONAMENTO HIDRÁULICO DA GALERIA.

Considerando a válvula borboleta e o registro de gaveta totalmente abertos. Considerando o nível mínimo de operação, cota 38,00m, e a vazão a ser regularizada de $0,04\text{m}^3/\text{s}$ com 90% dimensiona-se o tubo para passar essa vazão com velocidade de 2,0m/s.

$$Q = V \cdot S$$

$$s = \frac{Q}{V}$$

$$\frac{\pi D^2}{4} = \frac{Q}{V}$$

$$D = \sqrt{\frac{4Q}{\pi V}}$$

$$D = \sqrt{\frac{4 \times 0.04}{\pi \times 2.0}} = 0.159m$$

Será adotado D=300mm.

A velocidade para a vazão será:

$$V = \frac{Q}{s} = \frac{0.04}{0.071} \cong 0.56m / s$$

Determinação das vazões e velocidade para as cotas de 374,00m a 365,00m com a válvula borboleta e o registro de gaveta totalmente abertos.

Aplicando a equação de Bernoulli entre os pontos 1 e 2.

$$\frac{P_1}{\gamma} + h + \frac{\overline{V_1^2}}{2g} = \frac{P_2}{\gamma} + O + \frac{\overline{V_2^2}}{2g} + h_f + h_L$$

tem-se:

$$P_1 = P_2 = P_{atm}$$

 h_{f} = perda de carga por fricção

 $\boldsymbol{h}_{\!\scriptscriptstyle L}$ = perda de carga localizada.

h, é determinada pela expressão de Darcy-Weisbach dada por:

$$h_f = f \cdot \frac{L}{D} \cdot \frac{V_2^2}{2g}$$

$$h_L = \sum Ki \frac{V_2^2}{2g}$$

Ki = coeficiente de perda de carga localizada.

$$K_1 = \text{Grade} = 1,45$$

$$K_3$$
 = Válvula Borboleta = 0,36

$$K_4$$
 = Registro de Gaveta = 0,10

$$K_5$$
 = Saída = 1,0

$$h_t = h_t + h_t$$

$$h_{t} = f \cdot \frac{L}{D} \cdot \frac{V_{2}^{2}}{2g} + \sum K_{i} \cdot \frac{V_{2}^{2}}{2g}$$

$$h_{r} = f \cdot \frac{84.0}{0.30} \cdot \frac{V_{2}^{2}}{19.62} + 2.91 \times \frac{V_{2}^{2}}{19.62}$$

$$h_r = 14,27 \cdot f \cdot V_2^2 + 0,15 \cdot V_2^2$$

Substituindo na equação de Bernoulli, obtém:

$$z = 0.15V_2^2 + 14.27fV_2^2$$

$$V_2 = \left[\frac{z}{(0.15 + 14.27f)}\right]^{1/2}$$

Tem-se a velocidade como função de \mathbf{f} . O processo de resolução deste problema é pelo método da convergência. Atribui-se valor a \mathbf{f} e determina-se \mathbf{V}_2 . Com \mathbf{V}_2 calcula \mathbf{f} e determina-se novamente \mathbf{V}_2 . O processo prossegue até a convergência.

$$Re = \frac{V \cdot D}{D}$$

Onde:

Re = Número de Reynold

v = Viscosidade Cinemética

Para a água a 30° tem-se:

$$v = 8.04 \times 10^{-7} \, \text{m}^2 \, \text{/s}$$

Do ábaco de Rugosidade Relativa x Diâmetro tem-se para a tubulação de ϕ =300mm, $\frac{e}{D} = 0,00018$.

Para z = 11,50m, adotando f = 0,03 tem-se:

$$V_2 = \left[\frac{11,50}{0,15 + 14,27 \times 0,03}\right]^{1/2} = 4,46m / s$$

Para $V_2 = 4,46m / s$

$$Re = \frac{4.46 \times 0.30}{8.07 \times 10^{-7}} = 1.65 \times 10^{6}$$

Para
$$Re = 1,65 \times 10^6 \text{ e } \frac{e}{D} = 0,00018$$

Do ábaco de Moody tira-se:

$$f = 0.0137 m$$

Para f = 0.0137 tem-se:

$$V_2 = \left[\frac{11,50}{0.15 + 14.27 \times 0.0137}\right]^{1/2} = 5,76m / s$$

$$Re = \frac{5.76 \times 0.30}{8.07 \times 10^{-7}} = 2.14 \times 10^6$$

Para
$$Re = 2.38 \times 10^6$$
, tira-se $f = 0.0138$

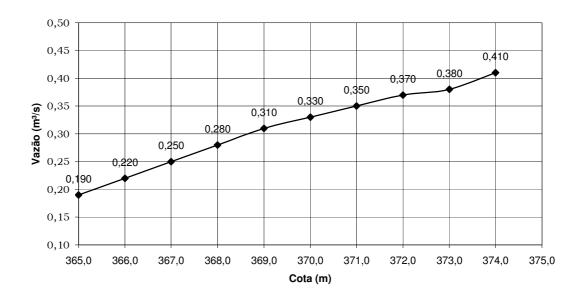
Para **f** = **0,0138** tem-se:

$$V_2 = \left[\frac{11,50}{0.15 + 14.27 \times 0.0138}\right]^{1/2} = 5.75 \, \text{m/s}$$

$$Re = \frac{5.75 \times 0.30}{8.07 \times 10^{-7}}$$
 : $Re = 2.13 \times 10^{-6}$

Do Ábaco de Moody tira-se $\mathbf{f} \cong \mathbf{0.0138}$ OK!

A vazão para a cota 374,00 é $Q = 5.75 \times 0.071 = 0.408 m^3 / s$.


Esse procedimento foi repetido da Cota 374,00m a 365,00m,obtendo-se o Quadro nº13.1:

QUADRO Nº13.1: TOMADA D'ÁGUA					
COTA (m)	VAZÃO (m³/s)	VELOCIDADE (m/s)			
365,00	0,19	2,68			
366,00	0,22	3,17			
367,00	0,25	3,60			
368,00	0,28	3,97			
369,00	0,31	4,32			
370,00	0,33	4,64			
371,00	0,35	4,94			
372,00	0,37	5,23			
373,00	0,38	5,49			
374,00	0,41	5,75			

Na figura a seguir é apresentada a curva de operação Cota x Vazão.

Gráfico: COTA x VAZÃO

14 - DIMENSIONAMENTO DO SANGRADOURO

14. DIMENSIONAMENTO DO SANGRADOURO

O sangradouro da Barragem João Guerra foi projetado com base nas informações dos estudos hidrológicos, dos estudos geotécnicos e do levantamento topográfico.

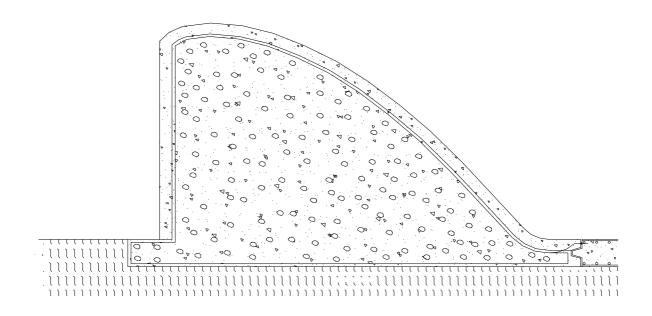
O sangradouro será implantado numa sela existente pelo lado esquerdo do rio São Joaquim afastado da estaca zero cerca de 857,0m.

No local dessa sela foi realizado um levantamento através da implantação de um eixo longitudinal locado e estaqueado em campo com duas curvas circulares, indo da estaca 0≡0 até a 48+14,00m, ou seja, com 974,00m. Em cada estaca desse eixo foi feita uma seção transversal com 150,0 para cada lado. O eixo transversal que define as regiões de montante e jusante foi lançado, também, em campo de forma tal que a estaca 7+10 do eixo transversal é igual à estaca 21+4,0 do eixo longitudinal.

Os elementos das curvas de concordância do eixo longitudinal são mostradas abaixo:

CURVA 1		CURVA 2		
PC	16+16,10m	PC	23+10,69	
PT	19+8,52m	PT	25+1,37	
AC	41°48'00"	AC	27°30′00"	
R	71,85m	R	63,93m	
T	27,44m	Т	15,64m	
D	52,42m	D	30,68m	

Nessa faixa levantada com cerca de 26,0ha foi desenvolvido o projeto do sangradouro. Dos estudos hidrológicos verificou-se que a largura do sangradouro deverá ter 100,00m. Por esta razão e levando em conta os estudos geotécnicos, que indicaram que o topo rochoso está variando entre as cotas 370,00 e 374,00m, projetou-se um canal escavado na cota 370,00m com 100,00m de largura com a execução de um muro creager com crista da ogiva na 374,00m com acumulação de 4,40hm³. Projetou-se também uma bacia de dissipação com 26,0m de extensão para que o ressalto hidráulico ocorra dentro da área protegida. A bacia terá uma espessura de 0,50m e será fixada no


maciço rochoso por chumbadores passivo de Aço CA-50 de ϕ =25mm que serão ancorados por 5,0m.

Na saída da bacia está previsto a execução de um muro com 1,0m de altura, com 0,20m de soleira e talude para jusante de 1:2 (V:H). Esse muro tem um redente que é encravado na cota 369,00.

As estruturas do sangradouro são compostas do perfil creager, da bacia de dissipação e dos muros laterais que serão de concreto massa.

O perfil dos muros laterais inicia a montante com 1,0 metro de altura, ou seja, na cota 371m, prossegue-se para jusante nessa cota por 2,0m. Em seguida sobe em talude 1:2,5 (V:H) até atingir a cota 378,0m. Nessa cota prossegue-se por 10,0m. Em seguida entra em talude 1:2 (V:H) até atingir a cota 375,0m. Nessa cota ele prossegue por 23,0m.

O perfil do muro creager foi calculado pelo procedimento recomendado pelo "Bureau of Reclamation os Small Dams". A crista da ogiva ficará na cota 374,0m, conforme a figura abaixo:

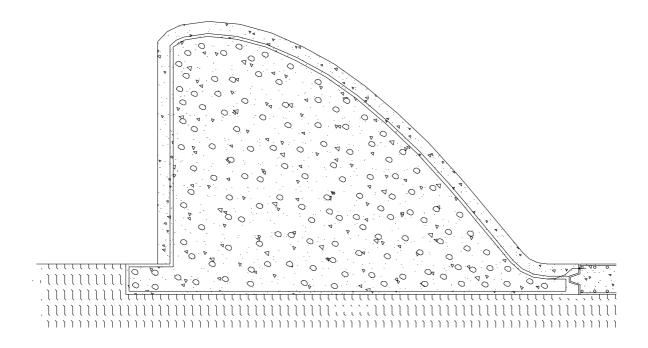
Se for colocado um sistema de eixos cartesiano com origem na ogiva, o Bureau of Reclamation of Small Dams compõem o perfil do muro da seguinte maneira:

A parte curva a esquerda da origem é formado pela concordância de duas curvas circulares de Raio R_1 e R_2 ;

A parte a direita da origem, que vai do ponto de coordenadas (0,0) até o ponto de tangência, segue a equação a seguir:

$$\frac{\mathbf{y}}{H_o} = -\mathbf{K} \cdot \left(\frac{\mathbf{x}}{H_o}\right)^n$$

Onde:


 H_o = Energia total acima da ogiva, incluindo a carga cinética;

 $\boldsymbol{K}, \boldsymbol{n}$ = Valores obtido de ábacos em função da relação $\frac{\boldsymbol{h_a}}{\boldsymbol{H_o}}$.

O ponto de tangência $X_T \cdot Y_T$ é aquele onde a derivada da função iguala-se ao talude do muro.

A seguir é apresentada a determinação do perfil do muro creager com paramento de montante vertical e o dimensionamento da bacia de dissipação.

14.1. PERFIL CREAGER

Vazão de Projeto (Cheia Milenar)

$$Q = 1021m^{3} / s$$

$$L = 100,0m$$

$$q = 10,21m^{3} / s / m$$

$$H_{0} = h_{0} + h_{a}$$

$$q = CH_{0}^{3/2}$$

$$V_{a} = \frac{q}{P + h_{0}}$$

$$h_{a} = \frac{q^{2}}{2g(P + h_{0})^{2}}$$

Adotando $h_0 = 2,90$ (Estudos Hidrológicos)

Tem-se:

$$h_a = \frac{10,21^2}{2 \times 9,81 \times (4+2,90)^2} = 0,11m$$

Equação do Creager

$$\frac{\mathbf{y}}{\mathbf{H}_0} = -\mathbf{K} \cdot \left(\frac{\mathbf{x}}{\mathbf{H}_0}\right)^n$$

$$\frac{h_a}{H_a} = \frac{0.11}{2.90 + 0.11} = 0.03$$

Dos ábacos, tem-se:

$$K = 0,505 e n = 1,857$$

Substituindo na equação, obtem-se:

$$\frac{y}{3,01} = -0,505 \cdot \left(\frac{x}{3,01}\right)^{1,857}$$
$$y = -0,196 \cdot X^{1,857}$$

A derivada da equação é:

$$\frac{d_y}{d_x} = -0.363 \cdot X^{0.857}$$

Fazendo $\frac{d_y}{d_x} = -1.25$, obtem-se a abscissa do ponto de tangência X_T .

$$-,363 \cdot X^{0,857} = -1,25$$

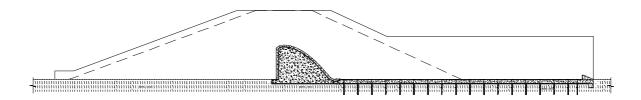
 $X_T = 3,443^{1,166} = 4,22$
 $Y_T = -2,840$

Os elementos do perfil creager são mostrados no quadro abaixo:

X	Y
0,00	0,00
0,50	-0,05
1,00	-0,19
1,50	-0,42
2,01	-0,71
2,50	-1,07
3,00	-1,51
3,50	-2,00
4,00	-2,57
4,22	-2,84

Da relação
$$\frac{h_a}{H_a} = 0,03$$
., obtem-se:

$$\frac{X_{c}}{H_{0}} = 0.268 \Rightarrow X_{c} = 0.81m$$


$$\frac{Y_{c}}{H_{0}} = 0.114 \Rightarrow Y_{c} = 0.34m$$

$$\frac{R_{1}}{H_{0}} = 0.518 \Rightarrow R_{1} = 1.56m$$

$$\frac{R_{2}}{H_{0}} = 0.218 \Rightarrow R_{2} = 0.65m$$

14.2. BACIA DE DISSIPAÇÃO

$$E_1 = P + H_0 = 7.01$$
 $E_1 = V + \frac{V^2}{V}$

$$E_2 = y + \frac{V^2}{2g}$$

Fazendo $\boldsymbol{\mathcal{E}_1} = \boldsymbol{\mathcal{E}_2}$ e sabendo-se que $\boldsymbol{\mathcal{V}} = \frac{\boldsymbol{q}}{\boldsymbol{\mathcal{Y}}}$, obtem-se:

$$7,01 = y + \frac{5,31}{y^2}$$

Resolvendo por iteração, obtem-se:

y = 0.09 (Lâmina na entrada da bacia)

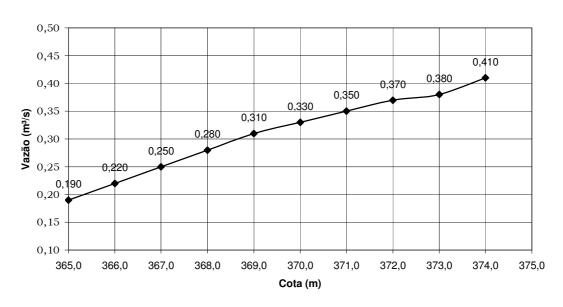
A velocidade na entrada da bacia será:

$$V = \frac{10,21}{0,93} = 10,97 \, \text{m} / \text{s}$$

O número de Froude na entrada da bacia será:

$$F_{R} = \frac{V}{\sqrt{g \times y}} = \frac{10,97}{\sqrt{9,81 \times 0,93}} = 3,63$$

A altura conjugada será:


$$y_2 = \frac{y_1}{2} \times (\sqrt{1 + 8F_R^2} - 1)$$

 $y_2 = 4.33$

A dimensão da bacia de dissipação será:

$$L = y_2 \times 6 = 4,33 \times 6 = 25,98m$$

Será adotada uma bacia com: $L_c = 26,00 \, m$.

15 - DEMONSTRATIVO DAS QUANTIDADES

15. DEMONSTRATIVO DAS QUANTIDADES

Os demonstrativos das quantidades da Barragem João Guerra são apresentados a seguir, sobre forma de planilhas de cálculo.

RESUMO DO DEMONSTRATIVO DE QUANTIDADES

1.0 1.1 1.1 1	INSTALAÇÃO DE CANTEIRO DE Instalação, manutenção e remoção o Escritório para fiscalização			
	DISCRIMINAÇÃO	ÁREA	ÁREA (m²)	
	Canteiro - Escritório	100,00	100,00	
			100,00	m2
1.1.2	Escritório da contratada			
	DISCRIMINAÇÃO	ÁREA	ÁREA (m²)	
	Canteiro - Escritório	100,00	100,00	
			100,00	m2
112	Posto médico			
1.1.3	DISCRIMINAÇÃO	ÁREA	ÁREA (m²)	
	Canteiro - Posto médico	10,00	10,00	
	Canton of Footo Internet	. 0,00	10,00	m2
			-,	
1.1.4	Alojamento de pessoal			
	DISCRIMINAÇÃO	ÁREA	ÁREA (m²)	
	Canteiro - Alojamento	100,00	100,00	
			100,00	m2
=	Labavatávia			
1.1.5	Laboratório	ÁDEA	ÁDEA (2)	
	DISCRIMINAÇÃO Canteiro - Laboratório	ÁREA	ÁREA (m²)	
	Canteiro - Laboratorio	75,00	75,00 75,00	m2
			75,00	1112
1.1.6	Almoxarifado			
	DISCRIMINAÇÃO	ÁREA	ÁREA (m²)	
	Canteiro - Almoxarifado	60,00	60,00	
			60,00	m2
1.1.7	Carpintaria, central de armação e ofi			
	DISCRIMINAÇÃO	ÁREA	ÁREA (m²)	
	Canteiro - Carpintaria e outros	120,00	120,00	
			120,00	m2
1.1.8	Depósito de explosivos			
1.1.0	DISCRIMINAÇÃO	ÁREA	ÁREA (m²)	
	Canteiro - Depósito de explosivos	20,00	20,00	
		- <i>y</i>	,	

RESUMO DO DEMONSTRATIVO DE QUANTIDADES

					20,00	m2
1.1.9	Refeitório e cozinha					
	DISCRIMINAÇÃO	ÁREA			ÁREA (m²)	
	Canteiro - Refeitório e cozinha	90,00			90,00	
					90,00	m2
1.1.10	Sanitários e chuveiros					
	DISCRIMINAÇÃO	ÁREA			ÁREA (m²)	
	Canteiro - Sanitários e chuveiros	25,00			25,00	
					25,00	m2
	Faces Cumidative neve Berração					
1.1.11	Fossa Sumidouro para Barração	OUANT			OLIANIT	
	DISCRIMINAÇÃO Canteiro	<i>QUANT.</i> 1,00			<i>QUANT.</i> 1,00	
	Carneiro	1,00			1,00	ud
					1,00	uu
1.1.12	Instalações Provisórias de Água					
	DISCRIMINAÇÃO	QUANT.			QUANT.	
	Canteiro	1,00			1,00	
					1,00	ud
4 4 40	Instalações Provisórias de Luz, Forç	a Tolofono o l	ógica			
1.1.13	DISCRIMINAÇÃO	QUANT.	Ogica		QUANT.	
	Canteiro	1,00			1,00	
	Cartello	1,00			1,00	ud
					1,00	uu
1.2	Placas alusivas à obra					
	DISCRIMINAÇÃO	QUANT.	LARGURA	ALTURA	ÁREA (m²)	
	Duas unidades	2,00	8,00	4,00	64,00	
					64,00	m2
2.0	3	_		_		
2.1	Estrada de contorno e acesso a obra	=	e 6,00m e reve	estimento de		
	DISCRIMINAÇÃO	EXTENS.(m)			EXTENS(km)	
	Estrada de contorno e acesso a obra	8.000,00			8,00	lessa
					8,00	km
			_			

2.2 Corpo de bueiro BSTC D=800mm - para estrada de acesso e contorno

DECLIMO DO	DEMONSTRATIVO	DE QUANTIDADES
RESUMO DO	DEMONSTRATIVO	DE GUANTIDADES

		~ ~ ~ ~			
	DISCRIMINAÇÃO	EXTENSÃO	QUANT.	EXTENSÃO	
	Média de um bueiro a cada 0,75 km	12,00	10,00	120,00	
				120,00	m
2.3	Boca de bueiro BSTC D=800mm - pa	ra estrada de a	cesso e contorno		
	DISCRIMINAÇÃO	QUANT.	Nº BOCAS	QUANT.	
	Média de um bueiro a cada 0,75 km	10,00	2,00	20,00	
				20,00	ud
0.4	Constitute de constitute adoleticamento	0.00			
2.4	Caminho de serviço - plataforma de		mento de 0,30m	EVTENC(Isma)	
	<i>DISCRIMINAÇÃO</i> Jazida J-01	EXTENS.(m) 1.000,00		EXTENS(km)	
	Sangradouro - britador	500,00		1,00 0,50	
	Britador - praça da obra	1.000,00		1,00	
	Areal A-01	1.100,00		1,10	
	Para o canteiro de obras	500,00		0,50	
	Para bota-fora	1.000,00		1,00	
	r dra bota rora	1.000,00		5,10	km
				3,.3	••••
2.5	Corpo de bueiro BSTC D=800mm - ca		iço		
	DISCRIMINAÇÃO	EXTENSÃO	QUANT.	EXTENSÃO	
	Média de um bueiro a cada 750m	10,00	7,00	70,00	
				70,00	m
2.6	Boca de bueiro BSTC D=800mm - ca	minho de servi	20		
2.0	DISCRIMINAÇÃO	QUANT.	Nº BOCAS	QUANT.	
	Média de um bueiro a cada 750m	7,00	2,00	14,00	
		.,00	_,00	14,00	ud
				,	
2.7		-			
	DISCRIMINAÇÃO	EXTENSÃO	QUANT.	EXTENSÃO	
	Estrada de contorno e acesso	8.000,00	2,00	16.000,00	
				16.000,00	m
2.8	Remanejamento de rede elétrica				
	DISCRIMINAÇÃO	EXTENS.(m)		EXTENS(km)	
	Estrada local	5.000,00		5,00	
		· - ,		5,00	km
				·	
2.9	Desmatamento, destocamento de ár	vore e limpeza o	da área da barragem e	sangradouro	

ÁREA(m²)

FATOR

DISCRIMINAÇÃO

ÁREA(ha)

RESUMO DO DEMONSTRATIVO DE QUANTIDADES							
	_						
	Barragem	22.816,66	10.000,00		2,28		
	Sangradouro	104.835,19	10.000,00		10,48		
	Tomada d'água	908,72	10.000,00		0,09		
					12,86	ha	
2.10	Desmatamento dos empréstimos.						
	DISCRIMINAÇÃO	ÁREA(m²)	FATOR	PERC(%)	ÁREA(ha)		
	Jazida J-01	287.500,00	10.000,00	90,00	25,88		
		,	,	,	25,88	ha	
2 11	Desmatamento, destocamento de árv	voro o limpoza	racional da ár	na da baaia b	idrauliaa		
2.11	DISCRIMINAÇÃO	ÁREA(m²)	FATOR	PERC(%)	ÁREA(ha)		
	Bacia hidraulica	828.769,84	10.000,00	60,00	49,73		
	Dacia fildi adilca	020.703,04	10.000,00	00,00	49,73	ha	
					45,76	···a	
2.12	Expurgo de jazida, barragem e sangr	adouro					
	DISCRIMINAÇÃO	ÁREA(m²)	ESPES.(m)	PERC(%)	VOLUME (m³))	
	Jazida J-01	287.500,00	0,10	90,00	25.875,00		
	Barragem	22.816,66	0,10	100,00	2.281,67		
	Sangradouro (também pedreira)	104.835,19	0,10	100,00	10.483,52		
	Tomada d'água	908,72	0,10	100,00	90,87		
					38.731,06	m3	
2 13	Recomposição e reflorestamento de	ároa dogradad	la				
2.10	DISCRIMINAÇÃO	ÁREA(m²)	FATOR		ÁREA(m²)		
	Jazida J-01	287.500,00	0,35		100.625,00		
	042.44 0 0 1	207.000,00	0,00		100.625,00	m2	
					1001020,00		
2.14	2.14 Demolição geral de estruturas e edificações na área da bacia hidraulica e barragem						
	DISCRIMINAÇÃO	ÁREA(m²)			ÁREA(m²)		
	Área da bacia e barragem	1.200,00			1.200,00		
					1.200,00	m2	
215	Carga mecanizada de entulho em car	minhão baccul	anto o tranen	com DMT-2	0km		
2.13	DISCRIMINAÇÃO	ÁREA(m²)	DENS.(t/m²)		PESO(ton.)		
	Área da bacia e barragem	1.200,00	1,00		1.200,00		
	Alca da bacia e ballayelli	1.200,00	1,00		1.200,00 1.200,00	ton.	
					1.200,00	wil.	

3.0 BARRAGEM PRINCIPAL

RESUMO DO DEMONSTRATIVO DE QUANTIDADES

R A				\sim
IVI	А	CI	ı	u

3.1 Escavação, carga, transporte e descarga de material comum, 201<DMT<=400m, da fundação e remoção superficial, para bota fora

			30.334,59	m3
Rock fill	1.397,55		1.397,55	
Cut Off - parte com rebaixamento	28.937,04	0,60	17.362,22	
Cut Off - parte superior	28.937,04	0,40	11.574,82	
DISCRIMINAÇÃO	VOLUME	FATOR	VOLUME (m³))

3.2 Rebaixamento de lençol freático na área do cut off para escavação de material comum

DISCRIMINAÇÃO	QUANT.	Nº LADOS	Nº DIAS	QUANT.
Cut Off (ext.=400m; quant.=1,0/m)	400,00	2,00	40,00	32.000,00

32.000,00 pt.Dia

3.3 Escavação, carga, descarga e transporte de material comum da jazida J-01 com DMT=1,00km, para execução do maciço e cut-off

DISCRIMINAÇÃO	VOL. GEO.	FAT. EMP.	VOL. EMP. (m³)
Cut Off - oriundo da jazida J-01	21.700,62	1,20	26.040,74
Maciço - oriundo da jazida J-01	123.827,80	1,20	148.593,36

174.634,10 m3

CÁLCULO DO DMT MÉDIO

	ORIGEM	DIST.1 (km)	DIST.2 (km)	DMT (km)
Jazida J-01		0.40	0.60	1,00

3.4 Aterro com compactação mecânica e controle, para execução do maciço e cut off

		145.528,42 m3
Maciço - oriundo da jazida J-01	123.827,80	123.827,80
Cut Off - oriundo da jazida J-01	21.700,62	21.700,62
DISCRIMINAÇÃO	VOL. GEO.	VOLUME (m³)

FILTRO E TAPETE

3.5 Extração, carga e descarga de areia de rio do areal A-01 para execução do filtro vertical, do tapete horizontal e da transição do rock-fill

DISCRIMINAÇÃO	VOL. GEO.	FAT. EMP.	VOL. EMP. (m³)
Filtro horizontal	7.910,56	1,15	9.097,14
Filtro vertical	3.687,55	1,15	4.240,68
			13.337.82 m3

3.6 Transporte de areia de rio do areal A-01, com DMT=1,10km

DISCRIMINAÇÃO VOL. GEO. FAT. EMP. VOL. EMP. (m³)

DECLINA DO	DEMONIOTE ATIVO	DE QUANTIDADEO
RESUMO DO	DEMONSTRATIVO	DE QUANTIDADES

		13.337.82	m3
3.687,55	1,15	4.240,68	
7.910,56	1,15	9.097,14	
	,	, , -	3.687,55 1,15 4.240,68

3.7 Escavação mecânica de vala do filtro vertical, profundidade de 2,0m

=oouvagao mooamoa ao va	a do mino romical, prominaladae de 2,0111		
DISCRIMINAÇÃO	VOL. GEO.	VOLUME (m³)	
Filtro vertical	3.687,55	3.687,55	
		3.687,55	m3

Espalhamento e adensamento de areia de rio para execução do filtro vertical, tapete horizontal e espalhamento e adensamento de areia de rio para execução da transição do rock-fill

			11 500 11 m2
Filtro vertical		3.687,55	3.687,55
Filtro horizontal		7.910,56	7.910,56
DISCRIMI	INAÇÃO	VOL. GEO.	VOLUME (m³)

TRANSIÇÃO DO ROCK-FILL E RIPRAP

3.9 Extração, carga e descarga de material rochoso do sangradouro, incluindo a produção de brita para execução da transição do rock-fill e riprap

				1.991,11 m3
Riprap		2.259,53	1,77	1.278,98
Rock fill		1.258,09	1,77	712,13
	DISCRIMINAÇÃO	VOL. GEO.	FAT. RED.	VOL. REDUZ.

DENSIDADES UTILIZADAS NOS MATERIAIS:

Rocha: 2,65 ton/m3

Pedra de mão: 1,75 ton/m³

Brita: 1,50 ton/m3

3.10 Transporte, com DMT=0,50km de material rochoso do sangradouro ao britador, para a produção de brita para execução da transição do rock-fill e do riprap

	DISCRIMINAÇÃO	VOL. RED.	FAT. EMP.	VOL. EMP. (m³)
Rock fill		712,13	1,51	1.078,37
Riprap		1.278,98	1,51	1.936,74
				3 015 11 m3

3.11 Transporte, com DMT=1,00km de brita do britador para a praça da obra, para execução da transição do rock-fill e do riprap

	DISCRIMINAÇÃO	VOL. PED.	FAT. EMP.	VOL. EMP. (m³)
Rock fill		1.078,37	1,17	1.258,10

RESUMO DO DEMONSTRATIVO DE QUANTIDADES

Riprap 1.936,74 1,17 2.259,53

3.517,63 m3

3.12 Espalhamento e adensamento dos materiais para a execução do rock-fill e do riprap

 DISCRIMINAÇÃO
 VOL. GEO.
 VOLUME (m³)

 Rock fill
 1.258,10
 1.258,10

 Riprap
 2.259,53
 2.259,53

3.517,63 m3

ROCK-FILL E RIPRAP

3.13 Regularização do talude de montante

 DISCRIMINAÇÃO
 ÁREA
 ÁREA (m²)

 Talude de montante
 11.770,18
 11.770,18

 11.770,18
 m3

3.14 Extração, carga e descarga de material rochoso do sangradouro, para execução do rock-fill e do riprap

 DISCRIMINAÇÃO
 VOL. GEO.
 FAT. RED.
 VOL. REDUZ.

 Rock fill
 2.340,09
 1,51
 1.545,34

 Riprap
 7.951,53
 1,51
 5.251,01

 6.796,35
 m3

DENSIDADES UTILIZADAS NOS MATERIAIS:

Rocha: 2,65 ton/m3

Pedra de mão: 1,75 ton/m3

3.15 Transporte, com DMT=1,00km de material rochoso do sangradouro para a praça da obra, para execução do rock-fill e do riprap

 DISCRIMINAÇÃO
 VOL. GEO.
 VOLUME (m³)

 Rock fill
 2.340,09
 2.340,09

 Riprap
 7.951,53
 7.951,53

 10.291,62
 m3

3.16 Execução de enrocamento de rock-fill e riprap

 DISCRIMINAÇÃO
 VOL. GEO.
 VOLUME (m³)

 Rock fill
 2.340,09
 2.340,09

 Riprap
 7.951,53
 7.951,53

 10.291,62
 m3

TALUDE DE JUSANTE

RESUMO DO DEMONSTRATIVO DE QUANTIDADES

3.17 Regularização do talude de jusante

 DISCRIMINAÇÃO
 ÁREA
 ÁREA (m²)

 Talude de jusante
 10.613,99
 10.613,99

 10.613,99
 m3

3.18 Extração, carga e descarga de material rochoso do sangradouro, incluindo a produção de brita para execução da proteção do talude de jusante

 DISCRIMINAÇÃO
 VOL. GEO.
 FAT. RED.
 VOL. REDUZ.

 Talude de jusante
 2.543,63
 1,77
 1.439,79

 1.439,79
 m3

DENSIDADES UTILIZADAS NOS MATERIAIS:

Rocha: 2,65 ton/m3

Pedra de mão: 1,75 ton/m3

Brita: 1.50 ton/m3

3.19 Transporte, com DMT=0,50km de material rochoso do sangradouro ao britador, para a produção de brita para execução da proteção do talude de jusante

 DISCRIMINAÇÃO
 VOL. RED.
 FAT. EMP.
 VOL. EMP. (m³)

 Talude de jusante
 1.439,79
 1,51
 2.180,25

 2.180,25 m3

3.20 Transporte, com DMT=1,00km de brita do britador para a praça da obra, para execução da proteção do talude de jusante

 DISCRIMINAÇÃO
 VOL. PED.
 FAT. EMP.
 VOL. EMP. (m³)

 Talude de jusante
 2.180,25
 1,17
 2.543,63

 2.543,63
 m3

3.21 Espalhamento e adensamento dos materiais para a execução da proteção do talude de jusante

DISCRIMINAÇÃOVOL. GEO.VOLUME (m^3) Talude de jusante2.543,632.543,632.543,63

COROAMENTO E DRENAGEM PLUVIAL

3.22 Revestimento primário com material comum (piçarra), inclusive extração, carga e descarga

 DISCRIMINAÇÃO
 EXTENSÃO LARGURA ESPES.
 VOLUME (m³)

 Est. 4+4,62 - Est. 26+0,00
 435,38
 6,45
 0,30
 842,46

842,46 m3

3.23 Transporte de material comum (piçarra) até a barragem, DMT=2,0km

RESUMO	DO	DEMONSTRATIVO	DE OLIVNI	IDADES
DESCUIVIC	-DU	DEMONSIDATIVE	JIJE GJUJANI	HIJAIJES

	<i>DISCRIMINAÇÃO</i> Est. 4+4,62 - Est. 26+0,00	VOL. GEO. 842,46	<i>FAT. EMP.</i> 1,20		VOL. EMP. (m ⁻ 1.010,95 1.010,95	³) m3
3.24	Calha em concreto armado tipo U pa	ra ombreiras, l	permas e talude	de jusante	e	
	DISCRIMINAÇÃO	EXTENSÃO	EXT 2		EXTENSÃO	
	Calha na ombreira esquerda	56,06			56,06	
	Calha na ombreira direita	54,87			54,87	
	Calha na berma	77,67	166,41		244,08	
	Calha no talude de jusante	82,14			82,14	
	·				437,15	m
3.25	Caixa de passagem nas calhas de dr	enagem das b	ermas			
	DISCRIMINAÇÃO	QUANT.			QUANT. (ud)	
	Est. 4+4,62 - Est. 26+0,00 - bermas	5,00			5,00	
		-,			5,00	ud
					•	
3.26	Meio fio					
	DISCRIMINAÇÃO	EXTENSÃO	<i>N°LADOS</i>		EXT TOT (m)	
	Est. 4+4,62 - Est. 26+0,00	435,38	2,00		870,76	
					870,76	m
3.27	Saída d'água					
0.27	DISCRIMINAÇÃO	QUANT.			QUANT. (ud)	
	Coroamento - 4+4,62 - 26+0,00	17,00			17,00	
	0010amento - 4+4,02 - 20+0,00	17,00			17,00	ud
					17,00	uu
4.0	SANGRADOURO					
4.1	Escavação, carga, transporte e desca	ırga de materia	l comum. DMT	<=2000m. o	brigatória do	
	sangradouro, para bota-fora	g				
	DISCRIMINAÇÃO	VOL. GEO.	FATOR 1ª	FATOR	VOLUME (m³))
	Canal do sangradouro	484.991,62	0,60	1,00	290.994,97	
					000 004 00	_

				290 994 97	m
Canal do sangradouro	484.991,62	0,60	1,00	290.994,97	
DISCRIMINAÇÃO	VOL. GEO.	FATOR 1ª	FATOR	VOLUME (m³)	

4.2 Escavação, carga, transporte e descarga de rocha, DMT<=2000m, obrigatória do sangradouro, para bota-fora

DISCRIMINAÇÃO	VOLUME	FATOR 2ª	FATOR	VOLUME (m³)
Canal do sangradouro - bota-fora	484.991,62	0,40	1,00	193.996,65
Para Transição do rock-fill e rip rap	1.991,11		-1,00	-1.991,11

DECLIMO DO	DEMONICEDATIVO	DE QUANTIDADES
RESUMO DO	DEMONSTRATIVO	DE GUANTIDADES

			183.769.40	m3
Para Proteção do talude de jusante	1.439,79	-1,00	-1.439,79	
Para Rock-fill e rip rap	6.796,35	-1,00	-6.796,35	

4.3 Produção, lançamento e aplicação de concreto ciclópico com Fck=15MPa, para execução do muro Creager

DISCRIMINAÇÃO	EXTENSÃO	ÁREA	VOLUME (m³)	
Muro creager	100,00	16,580	1.658,00	
			1.658.00 m	3

4.4 Produção, lançamento e aplicação de concreto ciclópico com Fck=15MPa, para execução dos muros do vertedouro

DISCRIMINAÇÃO	EXTENSÃO	ÁREA	QUANT.	VOLUME (m³,	")
Trecho 1	2,00	1,850	2,00	7,40	
Trecho 2	17,50	14,100	2,00	493,50	
Trecho 3.1	3,69	26,350	2,00	194,46	
Trecho 3.2	6,31	26,100	2,00	329,38	
Trecho 4	6,00	19,300	2,00	231,60	
Trecho 5	22,10	12,250	2,00	541,45	
				1.797,80	m3

4.5 Produção, lançamento e aplicação de concreto com Fck=20MPa, para execução da laje, redente e revestimento do creager

DISCRIMINAÇÃO	EXTENSÃO	LARG./ÁREA	ESP.	VOLUME (m³)	
Revestimento do Creager	100,00	2,35		235,00	
Laje do vertedouro	27,20	99,00	0,50	1.346,40	
Mureta do vertedouro	100,00	0,70	0,50	35,00	
Redente do vertedouro	99,00	0,50	0,50	24,75	
				1.641.15	m3

4.6 Produção, lançamento e aplicação de concreto com Fck=10MPa, para regularização da laje e do creager

				170,64	m3
Creager	100,00	7,20	0,05	36,00	
Laje do vertedouro	99,00	27,20	0,05	134,64	
DISCRIMINAÇÃO	EXTENSÃO	LARG.	ESP.	VOLUME (m³)

4.7 Armadura CA-50 diâmetro 10,0mm a 25,0mm para a execução da laje e redente

		56.169,76 kg
Laje do vertedouro e redente	56.169,76	56.169,76
DISCRIMINAÇÃO	PESO(kg)	PESO(kg)

RESUMO DO DEMONSTRATIVO DE QUANTIDADES

4.8	Forma plana chapa compensada resinada, esp.=10mm, para execução dos muros do vertedouro e
	laie

DISCRIMINAÇÃO	EXTENSÃO	LARG./ÁREA	QUANT.	ÁREA (m²)	
Trecho 1	2,00	3,17	2,00	12,68	
Trecho 2	17,50	10,75	2,00	376,25	
Trecho 3	10,00	18,33	2,00	366,60	
Trecho 4	6,00	15,08	2,00	180,96	
Trecho 5	22,10	11,83	2,00	522,89	
Laje do vertedouro - 1	100,00	3,62		362,00	
Laje do vertedouro - 2	27,20	0,50		13,60	
				1.834,98	m2

4.9 Forma em chapa compensada resinada, esp.=10mm, para execução do perfil creager

				952,00 m2
Creager		100,00	9,52	952,00
	DISCRIMINAÇÃO	EXTENSÃO	LARG.	ÁREA (m²)

4.10 Fugenband para juntas de dilatação para muro de contenção, muro Creager e laje

			248,98 m
Creager / Laje	100,00	1,00	100,00
Laje	29,90	3,00	89,70
Creager	19,76	3,00	59,28
DISCRIMINAÇÃO	EXTENSÃO	QUANT.	EXTENS.(m)

4.11 Chumbador com diâmetro de 75,0mm, aço Φ=25,0mm, CA-50, com perfuração rotopercussiva, injeção de nata de cimento e execução de prova de carga

injeção de nata de cimento e execuç	ao de prova de i	caiya	
DISCRIMINAÇÃO	EXTENSÃO	QUANT.	EXTENS.(m)
Laje do vertedouro	5,50	1188,00	6.534,00
Redente	5,50	66,00	363,00 6.897,00
MATERIAIS E SERVIÇOS - LAJE			
- Perfuração	782,00	5,50	4.301,00 m
- Injeção (cimento)	4.301,00	5,50	23.655,50 kg
- Aço - d=25mm	1.188,00	6,00	7.128,00 m
- Aço - d=25mm	7.128,00	3,93	28.013,04 kg
MATERIAIS E SERVIÇOS - REDENTE			
- Perfuração	66,00	5,50	363,00 m
- Injeção (cimento)	363,00	5,50	1.996,50 kg
- Aço - d=25mm	66,00	6,00	396,00 m
- Aço - d=25mm	396,00	3,93	1.556,28 kg

m

RESUMO DO DEMONSTRATIVO DE QUANTIDADES

	RESUMO DO DE	WONSTRATI	VO DE QUANT	IDADE2		
4.40	Barbara da tandar da mana	~	1			
4.12	Reaterro do tardoz do muro, com co	•	_	OUANT	VOLUME (
	DISCRIMINAÇÃO	EXTENSÃO		QUANT.	VOLUME (m³,)
	Canal do vertedouro	8,00	120,80	2,00	1.932,80	
	Canal do vertedouro	19,85	60,40	2,00	2.397,88	_
					4.330,68	m3
5.0	TOMADA D'ÁGUA					
	ESTRUTURAS DA TOMADA D'ÁGUA					
5.1	Escavação, carga, transporte e desca tomada d'água, para bota-fora	arga de materi	al comum, 201<	:DMT<=400i	m, obrigatória c	la
	DISCRIMINAÇÃO	VOLUME			VOLUME (m³,)
	Escavação do canal	7.419,52			7.419,52	,
		7.110,02			7.419,52	m3
5.2	Produção, lançamento e aplicação d montante	e concreto co	m Fck=20MPa,	para execuç	ção da caixa de	
	DISCRIMINAÇÃO	COMP.	LARG. / ALT	ESP.	VOLUME (m³,)
	Parede Frontal	1,20	0,76	0,20	0,18	,
	Paredes Laterais	3,64	1,50	0,15	0,82	
	Parede fundo 1	1,20	1,50	0,20	0,36	
	Parede fundo 2	1,50	2,10	0,15	0,47	
	Lajes fundo	1,50	1,97	0,15	0,44	
	Lajes tampa	1,50	1,82	0,15	0,41	
	Lajes lampa	1,50	1,02	0,13	2,69	m3
					2,03	1110
5.3	Produção, lançamento e aplicação d montante	e concreto co	m Fck=10MPa,	para regula	rização da caix	a de
	DISCRIMINAÇÃO	COMP.	LARG. / ALT	ESP.	VOLUME (m³,)
	Bloco 1	1,97	1,50	0,05	0,15	,
		,-	,	-,	0,15	m3
5.4	Produção, lançamento e aplicação d			para execuç		
	DISCRIMINAÇÃO	EXTENSÃO	ÁREA		VOLUME (m³,)
	Extensão total	84,00	0,72		60,48	_
					60,48	m3
5.5	Produção, lançamento e aplicação d	e concreto co	m Fck=10MPa	nara regula	rização da gale	ria
0.0				ogulu		

VOLUME

84,00

LARG.

1,04

ESP.

0,20

DISCRIMINAÇÃO

Extensão total

m3

VOLUME (m³)

17,47

17,47

RESUMO DO DEMONSTRATIVO DE QUANTIDADES

5.6	Produção, lançamento e aplicação d dissipação	le concreto co	om Fck=20MPa, p	ara execu	ção da caixa de	
	DISCRIMINAÇÃO	COMP.	LARG. / ALT	ESP.	VOLUME (m³)	
	Paredes módulo 1	9,00	2,80	0,20	5,04	
	Laje fundo mód. 1	3,50	2,40	0,20	1,68	
	Mureta	0,66	0,66	0,50	0,22	
	Par. entre mód. 1 e 2	2,40	3,20	0,20	1,54	
	Par. Lat mód. 2	6,40	2,50	0,20	3,20	
	Laje fundo mód. 2	2,40	3,40	0,20	1,63	
	Par. Frontal mod. 2	2,20	0,55	0,20	0,24	
	Viga de Impacto	2,00	1,20	0,15	0,36	
					13,91	m3
5.7	Produção, lançamento e aplicação d dissipação	le concreto co	om Fck=10MPa, p	ara regula	rização da caixa	de
	DISCRIMINAÇÃO	COMP.	LARG.	ESP.	VOLUME (m³)	
	Laje fundo mód. 1	3,50	2,40	0,05	0,42	
	Laje fundo mód. 2	2,40	3,40	0,05	0,41	
		_,	5,10	-,	0,83	m3
5.8	Armadura CA-50 diâmetro 10,0mm a	25,0mm para	a execução da c	aixa de m	ontante PESO(kg)	
	Total de aço da caixa de montante	248,36			248,36	
	Total de aço da caixa de montante	240,00			248,36	kg
5.9	Armadura CA-50 diâmetro 10,0mm a	25,0mm para	a execução da g	aleria		
	DISCRIMINAÇÃO	PESO			PESO(kg)	
	Total de aço da galeria	3.051,36			3.051,36	
					3.051,36	kg
5.10	Armadura CA-50 diâmetro 10,0mm a	25,0mm para	a execução da c	aixa de di	ssipação	
	DISCRIMINAÇÃO	PESO	3		PESO(kg)	
	Total de aço da caixa de dissipação	1.190,61			1.190,61	
	, , ,				1.190,61	m3
5.11	Forma plana chapa compensada res	sinada, esp.=1 COMP.	0mm, para execu	ıção da ca		
	Paredes Laterais - Externa	3,94	1,80		<i>ÁREA (m²)</i> 7,09	
	Parede frontal - externa	1,50	0,91		1,37	
	Parede fundo 2 - externa	1,50	2,10		3,15	
	Parede fundo 2 - externa - complem.	1,80	0,30		0,54	
	Paredes Laterais - interna	2,84	1,50		4,26	

0,50

1,80

1,10

4,30 **104,56**

m2

SRH/CE - Secretaria de Recursos Hídricos do Estado do Ceará Barragem: João Guerra - Município: Itatira/CE

	Barragem: João Guerra - Município: Itatira/CE					
	RESUMO DO DEMO	NSTRATI	VO DE QUANTIDADES			
	Davada frantal interna	1.00	0.76	0.01		
	Parede frontal - interna Parede fundo 1 - interna	1,20	0,76	0,91		
		1,20	1,50	1,80		
	Lajes tampa	1,20	1,10	1,32		
	Lajes tampa - complemento	1,20	0,80	0,96	0	
				21,40	m2	
5.12	Forma plana chapa compensada resina	ida, esp.=1	0mm, para execução da gal	eria		
	DISCRIMINAÇÃO	COMP.	ALTURA	ÁREA (m²)		
	Forma total	84,00	2,46	206,64		
				206,64	m2	
5.13	Forma plana chapa compensada resina	ada, esp.=1	0mm, para execução da cai	xa de dissipaç ê	ăo	
	DISCRIMINAÇÃO	COMP.	LARG. / ALT	ÁREA (m²)		
	Paredes módulo 1 - externa	9,80	2,80	27,44		
	Paredes módulo 1 - interna	8,60	2,60	22,36		
	Mureta	2,64	0,50	1,32		
	Par. entre mód. 1 e 2	2,00	2,60	5,20		
	Par. entre mód. 1 e 2	2,00	3,20	6,40		
	Par. Lat mód. 2 - externa	6,40	2,85	18,24		
	Par. Lat mód. 2 - interna	6,00	2,65	15,90		

DISCRIMINAÇÃO	EXTENSÃO	QUANT.	EXTENS.(m)
Galeria da tomada d'água	1,67	7,00	11,69
			11,69 m

0,40

2,40

2,00

2,00

1,25

0,75

0,55

2,15

EQUIPAMENTOS HIDROMECÂNICOS

Par. Lat mód. 2 - interna

Par. Frontal mod. 2

Par. Frontal mod. 2

Viga de Impacto

5.15 Fornecimento e montagem de tubulação de aço ASTM A-36, diâmetro de 300mm, espessura de 1/4", pontas flangeadas, com pintura interna a base de epóxi, inclusive parafusos, porcas e arruelas de vedação

DISCRIMINAÇÃO	EXTENSÃO	QUANT.	EXTENS.(m)
Galeria - tubos de 12,00m	12,00	6,00	72,00
Galeria - tubos de 10,00m	10,00	1,00	10,00
Galeria - toco de 0,90m	0,90	1,00	0,90
Galeria - toco de 1,08m	1,08	1,00	1,08
			83 98 m

RESUMO DO DEMONSTRATIVO DE QUANTIDADES

5.16 Fornecimento e montagem de toco ponta-flange em aço carbono ASTM A-36, DN=300mm, espessura 1/4", classe PN-10, L=0,55 m, com pintura interna a base de epóxi, inclusive parafusos, porcas e arruelas de vedação

DISCRIMINAÇÃO	QUANT.	QUANT.
Galeria caixa de jusante	1,00	1,00
		1.00 ud

5.17 Fornecimento e montagem de extremidades ponta-ponta em aço carbono ASTM A-36, DN=300 mm, espessura 1/4", com anel de engaste espessura 1/4", L=0,80m, inclusive pintura interna a base de epóxi

DISCRIMINAÇÃO	QUANT.	QUANT.
Galeria caixa de jusante	1,00	1,00
		1,00 ud

5.18 Fornecimento e montagem de registro gaveta flangeado em FoFo, DN 300mm, série oval, classe PN-10, acionamento por redutor de engrenagens, volante de manobras, by pass, inclusive acessórios de fixação e arruelas de vedação

DISCRIMINAÇÃO	QUANT.	QUANT.
Na caixa de dissipação	1,00	1,00
		1,00 ud

5.19 Fornecimento e montagem de Válvula Borboleta em fofo, flangeada, DN=300mm, série construtiva AWWA C-504, classe de pressão 150 B, flanges PN-10, acionamento manual por redutor de engrenagens acoplado a volante de manobras, inclusive indicador de abertura do obturador, acessórios de fixação, parafusos, porcas e arruelas de vedação

DISCRIMINAÇÃO	QUANT.	QUANT.
Na caixa de dissipação	1,00	1,00
		1,00 ud

5.20 Fornecimento e montagem de Junta Dresser tipo 38 com travamento axial Harness, confeccionada em aço carbono ASTM A36, DN=300mm, inclusive anéis de vedação em elastômero SBR-70, tirantes em aço galvanizado "à fogo", parafusos e porcas de fixação

DISCRIMINAÇÃO	QUANT.	QUANT.
Na caixa de dissipação	1,00	1,00
		1.00d

5.21 Fornecimento e montagem de grade de proteção para a caixa de controle de jusante, inclusive acessórios

DISCRIMINAÇÃO	LARGURA	COMP.	ÁREA (m²)
Na caixa de jusante	2,00	3,30	6,60
			6.60 m2

RESUMO DO DEMONSTRATIVO DE QUANTIDADES

5.22 For	necimento e montagem de esca	da de marinheiro	para a caixa de	controle de jusante, inclusive
ace	essórios			
	DISCRIMINAÇÃO	QUANT	AI TURA	FXTFNS (m)

 DISCRIMINAÇÃO
 QUANT.
 ALTURA
 EXTENS.(m)

 Na caixa de jusante
 2,00
 2,80
 5,60

 5,60
 m

5.23 Fornecimento e montagem de vertedouro triangular em chapa de aço, para a caixa de controle de jusante

 DISCRIMINAÇÃO
 LARGURA
 ALTURA
 QUANT.

 Na caixa de jusante
 2,00
 0,68
 1,36

 1,36
 m2

5.24 Fornecimento e instalação de registro de gaveta flangeado, em fofo, DN=80mm, PN-10, inclusive parafusos, porcas e arruelas de vedação para flanges

DISCRIMINAÇÃO QUANT. QUANT.

Na caixa de montanta 1,00 1,00 1,00 ud

5.25 Tubulação de aço ASTM A-36, diâmetro de 80mm, espessura de 1/4", com pintura interna a base de epóxi inclusive montagem

 DISCRIMINAÇÃO
 EXTENSÃO
 EXTENS.(m)

 Galeria
 1,30
 1,30

 1,30
 m

5.26 Fornecimento e montagem de tubulação de aço ASTM A-36, diâmetro de 300mm, espessura de 1/4", pontas flangeadas, com pintura interna a base de epóxi, com derivação de d=80mm e comprimento de 50cm

DISCRIMINAÇÃO EXTENSÃO EXTENS.(m)

Galeria caixa de montante 2,00 2,00
2,00 m

5.27 Fornecimento e assentamento de comporta tipo stop log com dimensões de 0,50x1,00m, incluindo guias, vedação e todos os acessórios de montagem

DISCRIMINAÇÃO QUANT. QUANT.

Na caixa de montante 1,00 1,00

1,00 ud

5.28 Fornecimento e montagem da grade de proteção da caixa de montante (1,30x1,00m)

DISCRIMINAÇÃO LARGURA ALTURA ÁREA (m^2) Na caixa de montante 1,30 1,15 1,50 1,50 m2

RESUMO DO DEMONSTRATIVO DE QUANTIDADES

6.0 6.1	TRATAMENTO DE FUNDAÇÃO Perfuração com sonda rotativa diân	netro NX			
	DISCRIMINAÇÃO	PROF.	Nº FUROS	EXT TOT (m))
	Furos Explorat 8+0,00 - 22+0,00	12,00	7,00	84,00	
	Furos Primarios - 8+0,00 - 22+0,00	12,00	41,00	492,00	
				576,00	m
6.2	Injeção de nata de cimento				
	DISCRIMINAÇÃO	PROF.(m)	CIMENTO	QUANT. (sc)	
	Furos Explorat 8+0,00 - 22+0,00	84,00	0,60	50,40	
	Furos Primarios - 8+0,00 - 22+0,00	492,00	0,60	295,20	
				345,60	saco
6.3	Ensaio de Perda D'água				
	DISCRIMINAÇÃO	№ FUROS	QUANT	QUANT. (ud)	
	Furos Explorat 8+0,00 - 22+0,00	7,00	4,00	28,00	
				28.00	ud

BARRAGEM JOÃO GUERRA CÁLCULO DE QUANTIDADES DO MACIÇO

SEÇÃO	ÁREA	A DO MACIÇO) (m²)	VOLUME DO MACIÇO (m³)		
SEÇAO	CENTRO	CUT-OFF	ESCAVAÇÃO	CENTRO	CUT-OFF	ESCAVAÇÃO
66,28	-	-	-	0,00	0,00	
80	2,75	-	20,74	18,87	0,00	142,28
100	16,64	-	29,92	193,90	0,00	506,60
120	21,23	21,66	32,86	378,70	216,60	627,80
140	82,83	51,03	48,38	1.040,60	726,90	812,40
160	241,14	47,14	69,83	3.239,70	981,70	1.182,10
180	579,29	57,48	90,25	8.204,30	1.046,20	1.600,80
200	826,06	41,41	98,16	14.053,50	988,90	1.884,10
220	650,16	117,66	95,47	14.762,20	1.590,70	1.936,30
240	528,44	108,43	89,30	11.786,00	2.260,90	1.847,70
260	518,41	88,00	139,03	10.468,50	1.964,30	2.283,30
280	445,46	111,23	79,97	9.638,70	1.992,30	2.190,00
300	348,97	108,23	74,25	7.944,30	2.194,60	1.542,20
320	277,79	29,07	68,82	6.267,60	1.373,00	1.430,70
340	214,38	72,66	63,41	4.921,70	1.017,30	1.322,30
360	201,39	38,92	62,32	4.157,70	1.115,80	1.257,30
380	255,90	39,85	67,16	4.572,90	787,70	1.294,80
400	300,62	42,20	70,31	5.565,20	820,50	1.374,70
420	340,03	44,72	73,64	6.406,50	869,20	1.439,50
440	226,66	44,02	64,11	5.666,90	887,40	1.377,50
460	64,19	13,66	45,01	2.908,50	576,80	1.091,20
466,02	47,11	13,13	44,38	335,01	80,64	269,06
480	7,20	-	27,28	379,63	91,78	500,90
500	40,34	5,87	26,74	475,40	58,70	540,20
520	3,81	-	21,59	441,50	58,70	483,30
		TOTAL		123.827,80	21.700,62	28.937,04
		T	OTAL GERAL	DO MACIÇO	145.528,42	

BARRAGEM JOÃO GUERRA CÁLCULO DE QUANTIDADES DO FILTRO HORIZONTAL / VERTICAL

SEÇÃO	ÁREA DO FILTRO	HOR/VERT. (m ²)	VOLUME DO FILTRO HOR/VERT. (m³)		
SEÇAO	HORIZONTAL	VERTICAL	AREIA	ESCAVAÇÃO	
66,28	-	-	0,00	0,00	
80	-	-	0,00	0,00	
100	0,75	-	7,50	0,00	
120	1,30	1,38	20,50	13,80	
140	4,20	6,38	55,00	77,60	
160	7,86	12,33	120,60	187,08	
180	13,10	21,61	209,60	339,38	
200	18,50	37,56	316,00	591,70	
220	15,57	38,30	340,70	758,60	
240	13,71	34,52	292,80	728,20	
260	13,87	28,49	275,80	630,10	
280	13,37	30,26	272,40	587,50	
300	11,52	27,78	248,90	580,40	
320	10,01	23,22	215,30	510,00	
340	8,65	17,35	186,60	405,70	
360	8,19	16,02	168,40	333,70	
380	9,42	20,60	176,10	366,20	
400	10,48	23,14	199,00	437,40	
420	11,19	25,90	216,70	490,40	
440	8,93	21,64	201,20	475,40	
460	3,67	8,14	126,00	297,80	
466,02	2,74	7,51	19,29	47,11	
480	-	-	19,15	52,49	
500	-	-	0,00	0,00	
520	_	-	0,00	0,00	
		TOTAL	3.687,55	7.910,56	

BARRAGEM JOÃO GUERRA CÁLCULO DE QUANTIDADES DO ROCK-FILL

SEÇÃO	ÁREA	DE ROCK-FIL	L (m²)	VOLUME DE ROCK-FIIL (m³)		
SEÇAO	PEDRA P	PEDRA G	ESCAVAÇÃO	PEDRA P	PEDRA G	ESCAVAÇÃO
66,28	-	-	-	0,00	0,00	
80	-	-	-	0,00	0,00	0,00
100	-	-	-	0,00	0,00	0,00
120	-	-	-	0,00	0,00	0,00
140	4,05	8,37	4,68	40,50	83,70	46,80
160	4,25	8,96	4,86	83,00	173,30	95,40
180	3,70	6,88	4,28	79,50	158,40	91,40
200	3,42	6,54	4,18	71,20	134,20	84,60
220	3,88	8,54	4,51	73,00	150,80	86,90
240	3,57	7,10	4,32	74,50	156,40	88,30
260	3,05	3,69	-	66,20	107,90	43,20
280	3,54	6,92	4,27	65,90	106,10	42,70
300	3,44	6,60	4,19	69,80	135,20	84,60
320	3,45	6,62	4,19	68,90	132,20	83,80
340	3,49	6,45	4,20	69,40	130,70	83,90
360	3,65	7,19	4,34	71,40	136,40	85,40
380	3,62	7,14	4,32	72,70	143,30	86,60
400	3,59	7,04	4,30	72,10	141,80	86,20
420	3,59	7,05	4,30	71,80	140,90	86,00
440	3,48	6,72	4,22	70,70	137,70	85,20
460	3,42	6,54	4,17	69,00	132,60	83,90
466,02	5,82	1,88	4,01	27,81	25,34	24,62
480	-	-	-	40,68	13,14	28,03
500	-	-	-	0,00	0,00	0,00
520	-		-	0,00	0,00	0,00
		TOTAL		1.258,09	2.340,09	1.397,55

BARRAGEM JOÃO GUERRA CÁLCULO DE QUANTIDADES DE MONTANTE

SEÇÃO	ÁREA DE MO	NTANTE (m²)		VOLUME DE MONTANTE (m³)		
SEÇAO	RIP-RAP	BRITA	REGUL.	RIP-RAP	BRITA	REGUL.
66,28	-	-	-	0,00	0,00	0,00
80	0,76	0,23	1,87	5,21	1,58	12,83
100	5,55	1,45	9,26	63,10	16,80	111,30
120	6,92	1,85	11,19	124,70	33,00	204,50
140	15,27	4,23	23,14	221,90	60,80	343,30
160	26,96	7,58	39,78	422,30	118,10	629,20
180	35,94	10,27	52,16	629,00	178,50	919,40
200	30,18	8,67	43,77	661,20	189,40	959,30
220	26,84	7,68	39,11	570,20	163,50	828,80
240	25,85	7,42	37,62	526,90	151,00	767,30
260	27,72	7,93	40,39	535,70	153,50	780,10
280	21,99	6,31	32,11	497,10	142,40	725,00
300	19,61	5,62	28,76	416,00	119,30	608,70
320	18,99	5,44	27,88	386,00	110,60	566,40
340	17,78	5,07	26,25	367,70	105,10	541,30
360	17,86	5,10	26,35	356,40	101,70	526,00
380	19,60	5,60	28,81	374,60	107,00	551,60
400	20,10	5,76	29,47	397,00	113,60	582,80
420	20,52	5,88	30,07	406,20	116,40	595,40
440	16,61	4,76	24,47	371,30	106,40	545,40
460	12,09	3,37	18,39	287,00	81,30	428,60
466,02	11,92	3,24	18,39	72,27	19,90	110,71
480	4,81	1,16	8,54	116,94	30,76	188,24
500	3,91	1,14	6,30	87,20	23,00	148,40
520	1,65	0,45	3,26	55,60	15,90	95,60
		TOTAL		7.951,53	2.259,53	11.770,18

BARRAGEM JOÃO GUERRA CÁLCULO DE QUANTIDADES DE JUSANTE

SEÇÃO	ÁREA DE JU	ISANTE (m²)	VOLUME DE JUSANTE (m³)		
SLÇAO	PROTEÇÃO	REGULAR	PROTEÇÃO	REGULAR	
66,28	-	-	0,00	0,00	
80	0,47	2,25	3,22	15,44	
100	1,21	4,72	16,80	69,70	
120	1,60	6,01	28,10	107,30	
140	1,76	11,82	33,60	178,30	
160	3,70	18,25	54,60	300,70	
180	6,61	27,77	103,10	460,20	
200	11,83	45,95	184,40	737,20	
220	12,11	46,71	239,40	926,60	
240	10,82	42,54	229,30	892,50	
260	9,10	36,17	199,20	787,10	
280	9,46	37,85	185,60	740,20	
300	8,61	35,03	180,70	728,80	
320	7,12	29,97	157,30	650,00	
340	5,27	23,59	123,90	535,60	
360	4,85	22,22	101,20	458,10	
380	6,30	27,10	111,50	493,20	
400	7,13	29,93	134,30	570,30	
420	8,03	33,00	151,60	629,30	
440	6,61	28,20	146,40	612,00	
460	2,15	13,33	87,60	415,30	
466,02	3,19	12,54	16,07	77,87	
480	0,52	2,38	25,93	104,29	
500	1,07	4,16	15,90	65,40	
520	0,32	1,70	13,90	58,60	
		TOTAL	2.543,63	10.613,99	

BARRAGEM JOÃO GUERRA CÁLCULO DE QUANTIDADES DA TOMADA D'ÁGUA

QE	SEÇÃO		ÁREA (m²)		VOLUME (m³)		
SL			CORTE	ATERRO	CORTE	ATERRO	
0	+	0,00	113,65	-	0,00	0,00	
1	+	0,00	111,04	-	2.246,89	0,00	
2	+	0,00	79,45	-	1.904,91	0,00	
3	+	0,00	54,22	-	1.336,72	0,00	
4	+	0,00	29,45	-	836,72	0,00	
5	+	0,00	15,61	-	450,63	0,00	
6	+	0,00	15,16	-	307,76	0,00	
7	+	0,00	9,21	-	243,76	0,00	
8	+	0,00	-	2,66	92,13	26,61	
8	+	8,788	-	21,20	0,00	104,86	
				TOTAL	7.419,52	131,48	

BARRAGEM JOÃO GUERRA CÁLCULO DE QUANTIDADES DO CANAL VERTEDOURO

SEÇÃO		^	ÁREA	(m²)	VOLUME (m³)		
SE	ÇA	iO	CORTE	ATERRO	CORTE	ATERRO	
1	+	0,00	0,27	337,40	0,00	0,00	
2	+	0,00	144,48	34,41	1.447,51	3.718,16	
3	+	0,00	328,18	-	4.726,59	344,14	
4	+	0,00	451,15	2,86	7.793,29	28,61	
5	+	0,00	532,94	0,10	9.840,93	29,64	
6	+	0,00	550,56	-	10.835,04	1,02	
7	+	0,00	573,78	-	11.243,37	0,00	
8	+	0,00	596,71	-	11.704,82	0,00	
9	+	0,00	539,67	-	11.363,76	0,00	
10	+	0,00	660,67	-	12.003,40	0,00	
11	+	0,00	734,13	-	13.947,94	0,00	
12	+	0,00	828,40	-	15.625,22	0,00	
13	+	0,00	749,85	-	15.782,41	0,00	
14	+	0,00	757,58	-	15.074,21	0,00	
15	+	0,00	817,20	-	15.747,75	0,00	
16	+	0,00	829,91	-	16.471,08	0,00	
16	+	16,10	825,54	-	13.326,35	0,00	
17	+	0,00	796,53	-	3.163,03	0,00	
18	+	0,00	922,90	-	17.194,29	0,00	
18	+	14,00	677,87	-	11.205,42	0,00	
19	+	0,00	708,36	-	4.158,71	0,00	
19	+	8,518	754,79	-	6.231,57	0,00	
19	+	14,00	856,06	-	4.415,33	0,00	
20	+	0,00	856,62	-	5.138,02	0,00	
21	+	0,00	881,24	-	17.378,59	0,00	
21	+	4,00	847,21	-	3.456,90	0,00	
22	+	0,00	823,64	-	13.366,76	0,00	
22	+	14,00	797,05	-	11.344,83	0,00	
23	+	0,00	767,01	-	4.692,19	0,00	
23	+	10,690	696,76	-	7.823,85	0,00	
23	+	14,00	648,46	-	2.226,34	0,00	
24	+	0,00	643,87	-	3.876,99	0,00	
25	+	0,00	674,05	-	13.179,19	0,00	
25	+	1,374	670,36	-	923,61	0,00	
26	+	0,00	632,11	-	12.129,91	0,00	
27	+	0,00	561,75	-	11.938,53	0,00	
28	+	0,00	491,63	-	10.533,79	0,00	
29	+	0,00	373,72	-	8.653,48	0,00	
30	+	0,00	385,85	-	7.595,63	0,00	
31	+	0,00	365,18	-	7.510,27	0,00	
32	+	0,00	333,68	-	6.988,63	0,00	

BARRAGEM JOÃO GUERRA CÁLCULO DE QUANTIDADES DO CANAL VERTEDOURO

S.E.	SEÇÃO		ÁREA (m²)		VOLUME (m³)		
SE			CORTE	ATERRO	CORTE	ATERRO	
33	+	0,00	323,52	-	6.572,08	0,00	
34	+	0,00	300,49	-	6.240,13	0,00	
35	+	0,00	213,43	-	5.139,22	0,00	
36	+	0,00	286,78	-	5.002,14	0,00	
37	+	0,00	405,25	-	6.920,32	0,00	
38	+	0,00	398,35	1,53	8.036,01	15,26	
39	+	0,00	418,18	4,97	8.165,27	64,95	
40	+	0,00	462,68	-	8.808,58	49,69	
41	+	0,00	550,26	-	10.129,37	0,00	
42	+	0,00	412,16	-	9.624,13	0,00	
43	+	0,00	382,84	-	7.949,94	0,00	
44	+	0,00	283,23	-	6.660,64	0,00	
45	+	0,00	182,92	28,96	4.661,48	289,64	
46	+	0,00	194,30	29,91	3.772,17	588,78	
47	+	0,00	146,69	68,14	3.409,90	980,53	
48	+	0,00	37,38	31,02	1.840,74	991,58	
				TOTAL	484.991,62	7.102,00	