

GOVERNO DO ESTADO DO CEARÁ

Programa de Gerenciamento e Integração dos Recursos Hídricos do Estado do Ceará - PROGERIRH

Contrato
N° 02/ PROGERIRH-PILOTO/CE/SRH 2001

Estudos de Alternativas, EIAS/RIMAS, Projetos Executivos, Levantamentos C a d a s t r a i s , P I a n o s d e Reassentamento e Avaliação Financeira e Econômica dos Projetos das Barragens João Guerra / Umari, Riacho da Serra, Ceará e Missi, e dos Projetos das Adutoras de Madalena, Lagoa do Mato, Alto Santo e Amontada

BARRAGEM RIACHO DA SERRA VOLUME I - ESTUDOS BÁSICOS Tomo 2 -Estudos Hidrológicos

ÍNDICE

ÍNDICE

	Páginas
ÍNDICE	1
APRESENTAÇÃO	4
FICHA HIDROLÓGICA	6
1- INTRODUÇÃO	9
2. CARACTERIZAÇÃO DA BACIA HIDROGRÁFICA	13
2.1. Sistema de Drenagem e Açudes Existentes	14
2.2. Solos e Cobertura Vegetal	
2.3. Geologia e Geomorfologia	
2.4. Determinação do Número CN	20
2.5. Geometria e relevo	24
3. CARACTERIZAÇÃO CLIMÁTICA	25
3.1. Temperatura	28
3.2. Insolação Total	30
3.3. Umidade Relativa	31
3.4. Ventos	
3.5. Regime Pluvial a Nível Anual e Mensal	
3.6. Evapotranspiração Potencial	37
3.7. Evaporação em Tanque Classe A	38
3.8. Sinopse Climática	39
4. ESTUDO DE CHUVAS INTENSAS	40
4.1. Chuvas Máximas Diárias	41
4.2. Chuvas Intensas	
4.2.1. Método das Isozonas (TORRICO,1975).	46

5. ESTUDO DE DEFLÚVIOS	51
6. ESTUDO DAS CHEIAS DE PROJETO	56
6.1. Metodologia	57
6.1.1. Precipitação	58
6.1.2 - Precipitação Efetiva	60
6.1.3. Hidrograma Unitário - SCS	63
6.2. Propagação da Cheia no Reservatório	63
6.3. Resultados	65
7. DIMENSIONAMENTO DO RESERVATÓRIO	67
7.1. Disponibilidade Hídrica	68
7.1.1. Metodologia	68
7.1.1.1. Solução Direta da Equação do Balanço Hídrico	68
7.2. Estudo da Capacidade Econômica do Reservatório	71
8. ESTUDOS ADICIONAIS	73
8.1. Introdução	74
8.2. Estudo da Disponibilidade Hídrica	74
ANEXO A	80
HIDROGRAMAS PARA 1000 ANOS	81
HIDDOCDAMAS DADA 10000 ANOS	80

APRESENTAÇÃO

APRESENTAÇÃO

O consórcio Montgomery- Watson/ Engesoft (Consórcio) e a Secretaria dos Recurso Hídricos do Estado do Ceará (SRH-CE) celebraram o contrato nº 02/PROGERIRH-PILOTO/CE/SRH 2001, que tem como objetivo o Estudo de Alternativas, Eias/ Rimas, Levantamentos Cadastrais, Planos de Reassentamento e Avaliação Financeira e Econômica dos Projetos das Barragens João Guerra/ Umari, Riacho da Serra, Ceará e Missi, e dos Projetos das Adutoras de Madalena, Lagoa do Mato, Alto Santo e Amontada.

A ordem de serviço foi emitida em 05 de março de 2001 e imediatamente as equipes do Consórcio iniciaram as atividades previstas no cronograma aprovado.

O presente relatório, denominado **Tomo 2 - Estudos Hidrológicos**, é parte integrante do **Volume 1 - Estudos Básicos** e diz respeito à **Barragem Riacho da Serra**, situada no riacho homônimo, integrante da Bacia do rio Jaguaribe, no município de Alto Santo/Ce

O presente relatório está dividido nos seguintes capítulos:

Capítulo 1 - Introdução

Capítulo 2 - Caracterização da Bacia Hidrográfica

Capítulo 3 - Caracterização Climática

Capítulo 4 - Estudo de Chuvas Intensas

Capítulo 5 - Estudos de Deflúvios

Capítulo 6 - Estudo das Cheias de Projeto

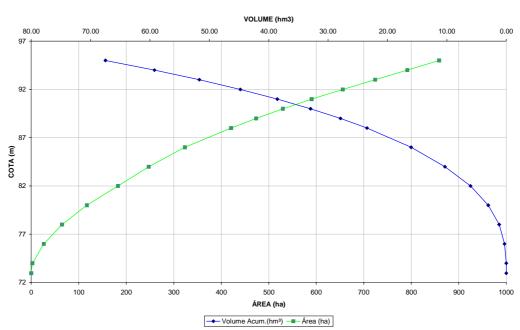
Capítulo 7 - Dimensionamento do Reservatório

Capítulo 8 - Estudos Adicionais

FICHA HIDROLÓGICA

FICHA HIDROLÓGICA

Açude Riacho da Serra


Município	Alto Santo
Rio ou Riacho Barrado	da Serra
Área da Bacia Hidrográfica	173,4 km ²
Comprimento do Talvegue Principal	49,6 km
Desnível do Talvegue Principal	555 m
Precipitação Média Anual	834 mm
Escoamento Médio Anual	147,7 mm
Evaporação Média Anual(Tanque Classe A)	2.235 mm
Vertedouro Tipo	Soleira Espessa
Cota do Vertedouro	88,00 m
Largura do vertedouro	120 m
Comprimento/Declividade Longitudinal do Vertedouro	73 m/0,00 %
Volume Máximo de Acumulação (Cota 88,00)	$23,47 \text{ hm}^3$
Vazão Máxima de Cheia - TR = 1.000 anos	$459 \text{ m}^3/\text{s}$
Cota Máxima de Cheia - TR = 1.000 anos	1,99 m
Vazão Máxima de Cheia - TR = 10.000 anos	$721 \text{ m}^3/\text{s}$
Cota Máxima de Cheia - TR = 10.000 anos	2,48 m
Vazão Regularizada com 90% de Garantia	$0.37 \text{ m}^3/\text{s}$
Vazão Regularizada com 95% de Garantia	$0.31 \text{ m}^3/\text{s}$
Vazão Regularizada com 99% de Garantia	$0.24 \text{ m}^3/\text{s}$

COTA - ÁREA – VOLUME				
Cota(m)	Área (ha)	Volume (hm³)	Volume Acum.(hm³)	
72.968	0.00	0.00	0.00	
74.000	2.40	0.01	0.01	
76.000	26.31	0.29	0.30	
78.000	64.75	0.91	1.21	
80.000	117.24	1.82	3.03	
82.000	182.46	3.00	6.03	
84.000	247.19	4.30	10.32	
86.000	323.31	5.71	16.03	
88.000	420.73	7.44	23.47	
89.000	473.62	4.47	27.94	
90.000	529.64	5.02	32.96	
91.000	590.28	5.60	38.56	
92.000	655.68	6.23	44.79	
93.000	724.00	6.90	51.68	
94.000	791.81	7.58	59.26	
95.000	858.66	8.25	67.52	

BARRAGEM RIACHO DA SERRA CURVA COTA x ÁREA x VOLUME

1- INTRODUÇÃO

1. INTRODUÇÃO

Os Estudos Hidrológicos do Açude Riacho da Serra objetivaram fornecer os elementos hidrológicos para o dimensionamento do reservatório e das estruturas hidráulicas de descarga de obra.

Os estudos iniciaram-se com a caracterização da área, tendo-se coletado e analisado informações de estações climáticas próximas. O uso do solo na bacia hidrográfica foi objeto de avaliação, baseado em estudos desenvolvidos anteriormente.

Em seguida, nos estudos pluviométricos, coletaram-se e analisaram-se as informações de estações próximas à região . Foram elaborados dois estudos a partir dos dados de chuvas:

- estudo de caracterização do regime pluviométrico;
- estudos de chuvas intensas;

Para a caracterização do escoamento afluente à barragem, base para os estudos de regularização, foram realizados os estudos de vazões mensais, utilizando-se para isso a série afluente ao açude definida no Plano de Gestão das Águas da Bacia do Jaguaribe (COGERH/ENGESOFT).

No capítulo seguinte, são apresentados os estudos de cheias de 1.000 anos e 10.000 anos de período de retorno afluentes à barragem. Devido à ausência de dados observados, utilizou-se modelo hidrológico baseado no método do SCS (Soil Conservation Service), o modelo HEC-1.

Para subsidiar-se os estudos de concepção do açude, simulou-se a laminação das cheias de 1.000 anos e 10.000 anos para diversas cotas de sangria e para diversas dimensões alternativas de sangradouro.

Da mesma forma, para os estudos de disponibilidade do açude foram simuladas as operações do mesmo para diversos volumes de acumulação, determinando-se as vazões regularizadas com garantias de 99% e 90%.

O acesso ao sítio do barramento, a partir de Fortaleza, é feito através da Br-116 até o entroncamento com a rodovia CE-138 e, através desta, até a cidade de Alto Santo,

percorrendo-se cerca de 234 km. Toma-se, então, a rodovia pavimentada CE-138, em direção a Iracema, por 6,0km. O acesso ao local do barramento se faz através de uma estrada carroçável, que parte da CE-138, na qual se segue por cerca de 6,0km até o local do boqueirão, situado junto a Fazenda do Sr. Otacílio Diógenes. No mapa da figura 1.1 é apresentado, no âmbito do estado, o local selecionado para localizar o barramento.

Fonte: Atlas do Ceará - IPLANCE.

FIGURA - 1.1
MAPA DE LOCALIZAÇÃO DA BARRAGEM

2. CARACTERIZAÇÃO DA BACIA HIDROGRÁFICA

2. CARACTERIZAÇÃO DA BACIA HIDROGRÁFICA

Neste capítulo são abordados os principais aspectos fisiográficos e hidroclimatológicos da bacia hidrográfica do açude Riacho da Serra, que barra riacho de mesmo nome nas coordenadas UTM N 9.384.980 e E 574.730. A barragem situa-se próxima à localidade Cacimba do Cunha, no município de Alto Santo, pertencendo à microrregião geográfica do Médio Jaguaribe.

2.1. SISTEMA DE DRENAGEM E AÇUDES EXISTENTES

A bacia hidrográfica do açude Riacho da Serra tem como principal contribuinte riacho homônimo, abrangendo uma área de contribuição de 170 Km². O riacho da Serra se estende na direção sul-norte, perfazendo, aproximadamente, 47,45 Km do ponto mais a montante do sistema de drenagem até o eixo da barragem.

Para a identificação dos açudes existentes a montante da barragem do Riacho da Serra, foram utilizadas 2 (duas) fontes de dados: a primeira foi Carta da SUDENE de Iracema, escala 1:100.000, através da qual foram identificados os açudes Mansinho, do Bento, Cacimba do Cunha e açude Sem Nome 1, sendo este último denominado desta forma para fins de identificação neste trabalho; a segunda foram as imagens de satélite TM/Landsat, para o ano de 1996, adquiridas quando da elaboração do Plano de Gerenciamento das Águas da Bacia do Rio Jaguaribe, COGERH (2000)¹, pela qual foram identificados mais dois espelhos d'água, sem denominação específica, que para fins de organização neste trabalho, foram denominados de açude Sem Nome 2 e Sem Nome 3. De acordo com as imagens de satélite, as quais representam o cenário do uso do solo em setembro de 1996, portanto na estação seca, a área total dos 6 espelhos d'água localizados a montante do açude Riacho da Serra perfaziam uma área de 109,7 ha.

A Figura 2.1.1 apresenta o sistema de drenagem da bacia contribuinte ao açude Riacho da Serra e região adjacente. Observa-se que o rio Figueiredo, principal curso d'água da região, recebe as água do riacho da Serra nas proximidades da cidade de Alto Santo. A bacia é de ordem 4, conforme classificação de Horton obtida da planta da bacia hidrográfica na escala 1:100.000.

Relatorio_Hidrologia_R_Serra 14

-

¹ COGERH, 2000. Plano de Gerenciamento das Águas da Bacia do Rio Jaguaribe.

2.2. Solos e Cobertura Vegetal

As informações sobre os tipos de solos predominantes na região da barragem Riacho da Serra foram extraídas do Mapa de Solos do Estado do Ceará, da Secretaria de Agricultura e Reforma Agrária, na escala 1:800.000.

Os solos presentes na bacia de drenagem do açude Riacho da Serra são predominantemente associações de solos Litólicos Eutróficos+Afloramentos Rochosos (Re40) e de solos Litólicos+Podzólicos Vermlho-Amarelo+Afloramentos Rochosos (Re58), abrangendo em conjunto cerca de 82% da área da bacia hidrográfica. São solos que se caracterizam pelo alto potencial de escoamento superficial, com muito baixa taxa de infiltração e transmissão da água. Com menor representatividade tem-se as associações de solos Litólicos Eutróficos+Afloramentos Rochosos+Bruno Não Cálcico (Re57) e de solos Litólicos Eutróficos+Bruno Não Cálcico (Re38), abrangendo em conjunto cerca de 12% da bacia hidrográfica do açude Riacho da Serra. O Quadro 2.2.1, a seguir, apresenta a distribuição dos solos presentes na bacia hidrográfica do açude Riacho da Serra.

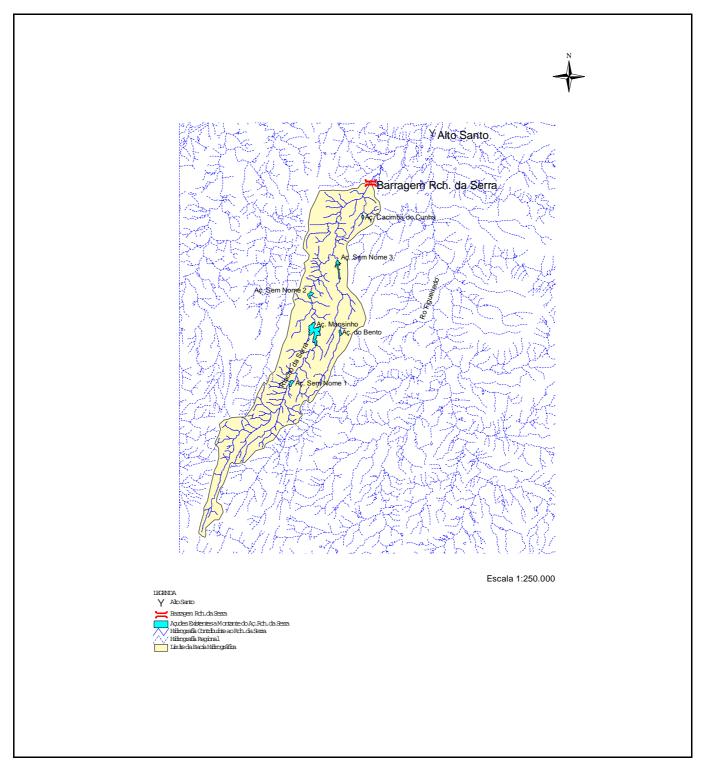


Figura 2.1.1 - Sistema de drenagem e açudes existentes na bacia hidrográfica do Açude Riacho da Serra.

Quadro 2.2.1: Manchas de solos existentes na bacia hidrográfica do açude Riacho da Serra.

Manchas de Solos	Área (ha)	Distribuição (%)
Re40 – Associação de Solos Litólicos Eutróficos + Afloramentos Rochosos	7.289	42
Re58 – Associação de Solos Litólicos + Podzólico Vermelho- Amarelo + Afloramentos Rochosos	7.017	40
Re57 – Associação de Solos Litólicos Eutróficos + Afloramentos Rochosos + Bruno Não Cálcico	1.055	6
Re38 - Associação de Solos Litólicos Eutróficos + Bruno Não Cálcico	1.023	6
PE7 – Podzólico Vermelho-Amarelo Eutrófico	458	3
PE103 - Podzólico Vermelho-Amarelo Eutrófico + Solos Litólicos	453	3
SS4 - Associação de Solonetz Solodizado + Regossolo Eutrófico	138	1
Ra1 - Associação de Solos Litólicos Álicos + Afloramentos Rochosos	57	0

Ressalta-se que a bacia hidráulica do açude Riacho da Serra inundará região cujo solo dominante é associação de solos Litólicos Eutróficos+Bruno Não Cálcico (Re38), como pode ser visto na Figura 2.2.1, a qual apresenta mapa com a distribuição das manchas de solos presentes na bacia hidrográfica do açude Riacho da Serra.

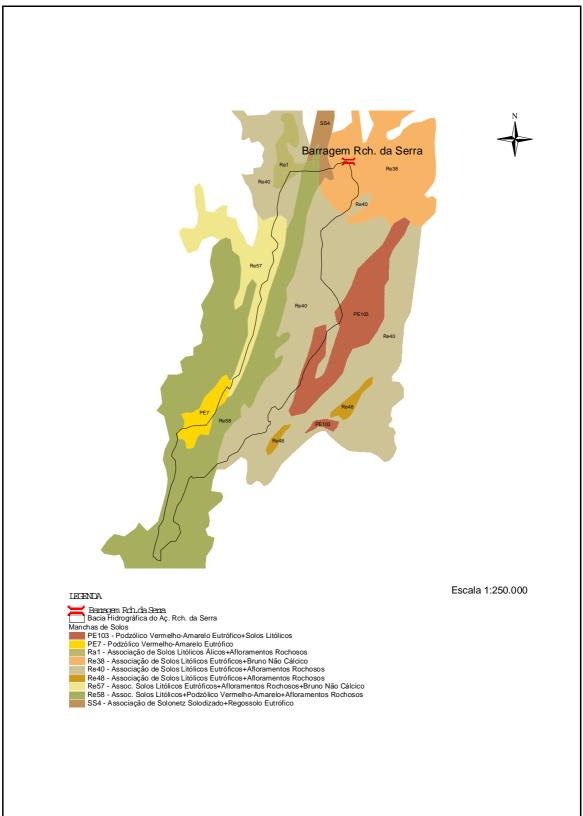


Figura 2.2.1 - Manchas de Solos na bacia hidrográfica do açude Riacho da Serra.

A caracterização da cobertura vegetal e uso do solo para a bacia hidrográfica do açude Riacho da Serra foi obtida a partir das imagens de satélite TM/Landsat, para o ano de 1996, adquiridas quando da elaboração do Plano de Gerenciamento das Águas da Bacia do Rio Jaguaribe (COGERH/ENGESOFT, 2000). O Quadro 2.2.2, a seguir, apresenta a configuração do uso do solo na bacia hidrográfica do açude Riacho da Serra, podendo a mesma ser visualizada pela Figura 2.2.2.

Quadro 2.2.2: Configuração do uso do solo na bacia hidrográfica do açude Riacho da Serra, de acordo com as imagens de satélite TM/Landsat, para o ano de 1996 (COGERH/ENGESOFT, 2000).

Uso do Solo	Área (m²)	% do Uso do Solo em Relação à Área da Bacia Hidrográfica
Caatinga Arbórea Densa	39.794.400	23,41
Caatinga Herbáceo Arbustiva	115.759.800	68,10
Espelhos d'água > 5 ha	1.097.100	0,65
Solo Exposto	17.100	0,01
Mata Ciliar	855.000	0,50
Área Agrícola	1.366.200	0,80
Área Alterada/Antropizada	11.101.500	6,53
Total	169.991.100	100

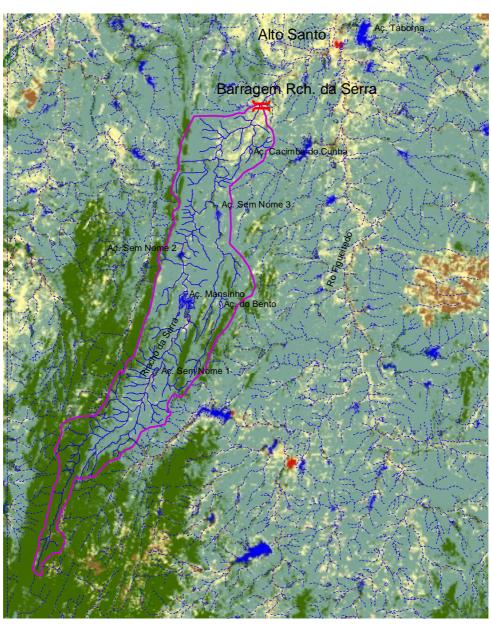
Nota-se pelas informações apresentadas no Quadro 2.2.2 que a região da bacia de drenagem do açude Riacho da Serra possui ótimo estado de preservação das matas virgens, pois aproximadamente 90 % da área é coberta por caatinga arbórea densa e caatinga herbáceo arbustiva, além de que áreas identificadas como de solo exposto ou áreas antropizadas, as quais indicam sinais de degradação ambiental, representam menos de 7% da área da bacia hidrográfica.

Conclui-se que a bacia de drenagem do açude Riacho da Serra encontra-se em ótimo estado de conservação, não apresentando sinais representativos de degradação ambiental.

2.3. GEOLOGIA E GEOMORFOLOGIA

O projeto está localizado no complexo Pré-Cambriano não diferenciado, caracterizado por gnaisses e migmatitos. A região apresenta também intrusões graníticas elongadas na direção nordeste. A foliação regional é norte- noroeste e a área é caracterizada por dobras com direção paralela a esta foliação. A falha de Jaguaribe, cuja direção é paralela a foliação regional, passa alguns quilômetros à oeste do local da barragem.

2.4. DETERMINAÇÃO DO NÚMERO CN


CN ou *Curve-Number* é o parâmetro de abstração do Método *Curve-Number* do *Soil Conservation Service* – SCS utilizado neste trabalho para estimativa da precipitação efetiva, aquela parcela da chuva que, de fato, contribui para a geração do escoamento superficial, sendo deduzidas as perdas por interceptação superficial, armazenamento em depressões e infiltração.

Este método baseia-se no cálculo da chuva efetiva em função da altura total de chuva e do parâmetro de abstração CN. A determinação deste coeficiente depende das seguintes propriedades geradoras de escoamento na bacia: grupo hidrológico de solos (função da permeabilidade), uso do solo e do tratamento agrícola, condição da superfície subterrânea e condição de umidade antecedente. As 2 últimas propriedades foram consideradas como do tipo condições de umidade antecedente normal, para as quais tem-se os valores de CN tabelados de acordo com o grupo hidrológico e o uso do solo. O Quadro 2.4.1 a seguir apresenta a descrição de cada grupo hidrológico de solo considerado pelo Método CN.

IRCENDA
Berragem Rch. da Serra
Hithogaffa
Hithogaffa Regirnal
Linnte Bacia Hithogaffra Rch. da Serra
Uso do Sob
Sem Dado
Areas Tripadas
Caetirga Pathórea Dersa
Caetirga Pathórea Arbustúa
Aputese Lagos
Área Agrifola
Sob Esposto
Area Alexada
Agua c/Macófitase Sedinentos
Mata Ciliar
Nusem
Área Ubarra
No Data

Escala 1:250.000

Quadro 2.4.1: Grupos hidrológicos de solos de acordo com a classificação adotada pelo Método CN.

Grupo Hidrológico do Solo	Descrição
A	Solos que produzem baixo escoamento superficial e alta infiltração. Solos arenosos profundos com pouco silte e argila.
В	Solos menos permeáveis do que o anterior, solos arenosos menos profundos do que o tipo A e com permeabilidade superior à média.
С	Solos que geram escoamento superficial acima da média e com capacidade de infiltração abaixo da média, contendo percentagem considerável de argila e pouco profundo.
D	Solos contendo argilas expansivas e pouco profundos, com muito baixa capacidade de infiltração, gerando a maior proporção de escoamento superficial.

Fonte: TUCCI, C.E.M. (org.), 1993. Hidrologia: Ciência e Aplicação. ABRH/EDUSP.

As informações sobre o grupo hidrológico para a região da bacia hidrográfica do açude Riacho do Sangue foram obtidas a partir da classificação de solos quanto a permeabilidade para a bacia do Jaguaribe, apresentada no Plano Estadual de Recursos Hídricos (1992)². De acordo com estas informações, a bacia constitui-se exclusivamente de solos do tipo D.

Com relação às informações de uso do solo, foram extraídas das imagens de satélite TM/Landsat do Plano de Gerenciamento das Águas da Bacia do Rio Jaguaribe (2000), conforme já citado anteriormente, cuja classificação de uso do solo foi adaptada à classificação utilizada pelo Método *Curve-Number*. O Quadro 2.4.2 apresenta a correlação utilizada neste trabalho entre a classificação do uso do solo das imagens de satélite TM/Landsat e a utilizada pelo Método CN.

² CEARÁ, SRH, 1992. Plano Estadual dos Recursos Hídricos.

Quadro 2.4.2: Correlação entre a classificação do uso do solo das imagens de satélite TM/Landsat e a utilizada pelo Método CN.

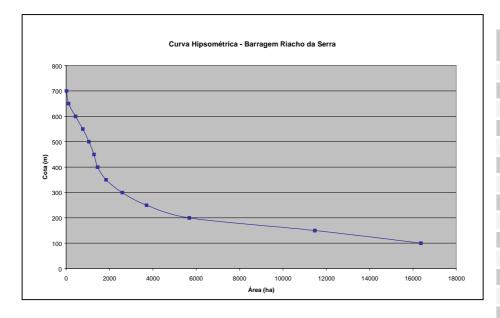
Uso do Solo na Imagem de Satélite TM/Landsat	Uso do Solo de Acordo com o Método CN
Caatinga Arbórea Densa e Mata Ciliar	Florestas Normais
Caatinga Herbáceo Arbustiva	Florestas Esparsas
Solo Exposto	Estradas de terra de superfície dura
Áreas Agrícola	Plantações regulares em fileiras retas
Área Alterada/Antropizada	Pastagens ou terrenos em más condições

Com as informações do grupo de solo hidrológico da bacia e o uso do solo (classificado de acordo com o Método CN) pode-se determinar o CN, a ser adotado no cálculo da precipitação efetiva, ponderando-se estas informações, conforme apresentado no Quadro 2.4.3 a seguir.

Quadro 2.4.3: Determinação do Número CN para a Área da Bacia Hidrográfica do Açude Riacho da Serra.

USO do SOLO	PERMEABILIDADE (m2) PONDERAÇÃO CN		
USO do SOLO	D	CN	PESO
Plantações regulares em fileiras retas	1.366.200	88	0,01
Florestas Normais	40.649.400	76	0,24
Florestas Esparsas	115.759.800	84	0,69
Estradas de terra de superfície dura	17.100	92	0,00
Pastagens ou terrenos em más condições	11.101.500	89	0,07
CN GERAL			82

Determinou-se, portanto, que para o cálculo da precipitação efetiva na bacia do açude Riacho da Serra deve ser usado CN igual a 82.



2.5. GEOMETRIA E RELEVO

A bacia hidrográfica da barragem Riacho da Serra possui uma área total de 173,36 km², um perímetro de 104.743m e comprimento de maior curso d'água de 52,9km, cujos índices que a caracterizam do ponto de vista geométrico estão apresentados na tabela 2.5.1. No que diz respeito à caracterização do relevo, é apresentada na tabela 2.5.2 os valores de declividade da bacia, declividade de álveo e a curva hipsométrica.

Tabela 2.5.1: Características Geométricas	
Fator de Forma (K _f):	0,06
Coeficiente de Compacidade (Kc):	2,23

Tabela 2.5.2: Características de Relev	/ O
Declividade da Bacia:	20,5%
Declividade de Álveo:	1,04%

Tabela 2.5.3 Curva Hipsométrica		
Cota (m)	Área (ha)	
700	11,09	
650	109,25	
600	430,30	
550	762,16	
500	1044,05	
450	1282,06	
400	1451,94	
350	1836,04	
300	2581,75	
250	3702,64	
200	5673,64	
150	11471,19	
100	16361,48	

3. CARACTERIZAÇÃO CLIMÁTICA

3. CARACTERIZAÇÃO CLIMÁTICA

Para a caracterização climática da região foram utilizadas as informações da estação meteorológica de Morada Nova, a qual é a estação geograficamente mais próxima do local da barragem, localizada nas coordenadas UTM N 9.436.243 e E 568.354. As informações com relação a temperatura, insolação, umidade relativa, ventos e evaporação foram extraídas das *Normais Climatológicas – 1961 a 1990 -* do INEMET (1992), para a estação meteorológica de Morada Nova.

Para os dados de precipitação e de evapotranspiração foram utilizados os postos pluviométricos próximos ao lago a ser formado, sendo que a evapotranspiração foi calculada segundo *Hargreaves* (1974)³. Identificou-se como posto a ser utilizado nos estudos a estação aç. Ema (código 3813532), já que é o mais próximo à área, pois não existe nenhum posto pluviométrico dentro dos limites da bacia hidrográfica e o mesmo é o que se situa mais próximo ao lago a ser formado. Este posto pluviométrico tem coordenadas 5°46' Sul de Latitude e 38°21' Oeste de Longitude.

A Figura 3.1, a seguir, apresenta a localização da estação de Morada Nova e do posto pluviométrico açude Ema com relação à bacia hidrográfica e à posição da barragem do açude Riacho da Serra.

³ HARGREAVES, G. H. (1974) Potencial Evapotranspiration and Irrigation Requirements for Northeast Brazil, Utah State University.

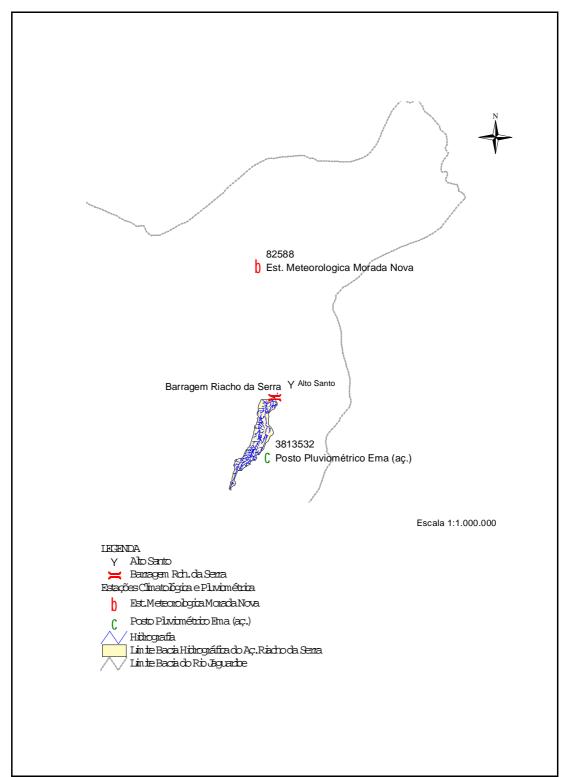


Figura 3.1: Localização da Estação Meteorológica Morada Nova e do Posto Pluviométrico Açude Ema, utilizados nos Estudos Climatológicos e Pluviométricos do açude Riacho da Serra.

3.1. TEMPERATURA

Para a avaliação dos valores de temperatura média são utilizadas medições realizadas às 12:00, 18:00 e 24:00 do Tempo Médio de Greenwich – TMG. A temperatura média compensada é obtida por ponderação de tais medições, segundo a seguinte fórmula estabelecida pela Organização Meteorológica Mundial – OMM:

$$T_{comp} = \frac{T_{12} + 2T_{24} + T_{MAX} + T_{MIN}}{5}$$

onde: $T_{comp} \rightarrow$ Temperatura Média Compensada;

 $T_{.12}$ \rightarrow Temperatura observada às 12:00 TMG;

 T_{24} \rightarrow Temperatura observada às 24:00 TMG;

 $T_{MAX} \rightarrow \text{Temperatura máxima do dia};$

 $T_{MIN} \rightarrow$ Temperatura mínima do dia.

As informações com relação a temperatura na região são apresentadas no Quadro 3.1.1 para os valores de temperatura mínima e máximo absolutos, temperatura média compensada e média das mínimas e máximas temperaturas, os quais estão representados na Figura 3.1.1. Pode-se observar que a temperatura média anual varia em torno de 27°C, com baixa amplitude térmica ao longo do ano, em torno de 2,5°C. O período mais quente situa-se no bimestre novembro/dezembro, enquanto que o de temperatura mais amena ocorre em junho/julho. As médias máximas e mínimas extremas ocorrem, respectivamente, no mês de outubro (36,1°C) e agosto (20,6°C).

Quadro 3.1.1: Valores de Temperatura em º C para a Estação de Morada Nova

Valores de Temperatura (° C) para a Estação de Morada Nova												
Mês	Mínima Absoluta	Média das Mínimas	Média Compensada	Média das Máximas	Máxima Absoluta							
Jan	19,5	22,3	26,9	35,1	38,5							
Fev	18,1	23,5	27,3	33,8	43,7							
Mar	20,1	23,0	26,7	32,3	37,9							
Abr	19,6	21,8	26,6	31,9	37,1							
Mai	18,0	22,6	26,7	31,9	36,2							
Jun	16,7	21,4	26,0	31,8	36,5							
Jul	16,3	20,8	26,0	32,6	36,5							
Ago	16,2	20,6	26,6	34,2	37,2							
Set	16,6	21,4	27,6	35,3	38,2							
Out	17,4	22,1	27,9	36,1	38,9							
Nov	18,0	20,8	28,4	34,5	38,8							
Dez	19,4	22,9	28,3	35,7	38,7							
Média Anual	16,2	21,9	27,1	33,8	38,9							

Fonte: INEMET, 1992. Normas Climatológicas 1961-1990.

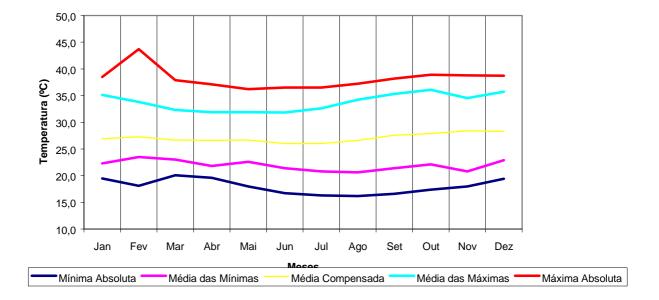


Figura 3.1.1: Distribuição da Temperatura (° C) para a Estação de Morada Nova - CE ao longo do ano.

3.2. Insolação Total

O Quadro 3.2.1 e a Figura 3.2.1 apresentam os valores de insolação total para a estação de Morada Nova, segundo o INEMET (1992), distribuídos ao longo do ano. Pode-se observar que o trimestre de maior insolação compreende os meses de agosto a outubro, enquanto que a menor insolação ocorre de fevereiro a abril. O mês de outubro apresenta o maior índice de insolação, cerca de 297 horas, enquanto que abril é o menor, cerca de 198 horas.

A insolação média anual da região é cerca de 2.982,8 horas, representando, teoricamente, a 68% dos dias do ano com luz solar direta.

Quadro 3.2.1: Valores de Insolação Total para a Estação de Morada Nova, CE

Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Total Anual
Insolação	232,	203,	206,	197,	233,	248,	259,	279,	282,	297,	279,	262,	2002.0
(horas)	6	1	3	9	5	9	0	9	7	0	2	7	2902,0

Fonte: INEMET, 1992. Normas Climatológicas 1961-1990.

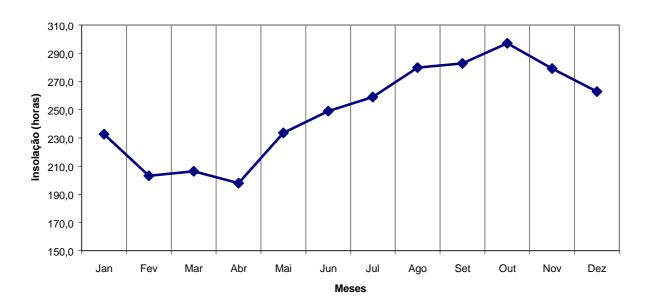


Figura 3.2.1: Distribuição da Insolação Total para a Estação de Morada Nova - CE ao longo do ano.

3.3. UMIDADE RELATIVA

Para a avaliação dos valores de umidade relativa média são utilizadas medições realizadas às 12:00, 18:00 e 24:00 do Tempo Médio de Greenwich – TMG. A umidade relativa média é obtida por ponderação de tais medições, segundo a seguinte fórmula estabelecida pela Organização Meteorológica Mundial – OMM:

$$U = \frac{U_{12} + U_{18} + 2U_{24}}{4}$$

onde: $U \longrightarrow$ Temperatura Média Compensada;

 U_{12} \rightarrow Temperatura observada às 12:00 TMG;

 U_{18} \rightarrow Temperatura observada às 18:00 TMG;

 $U_{24} \rightarrow$ Temperatura observada às 24:00 TMG.

O Quadro 3.3.1 e a Figura 3.3.1 apresentam os valores de umidade relativa média para a estação de Morada Nova, segundo o INEMET (1992), distribuídos ao longo do ano. Pode-se observar que nos meses de março e abril a umidade relativa fica em torno de 80%, enquanto que no período seco, meses de setembro a novembro, os valores atingem cerca de 58%.

Quadro 3.3.1: Valores de Insolação Total para a Estação de Morada Nova, CE

Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Total Anual
Umidade Relativa (%)	65,8	72,0	80,3	79,5	75,0	73,7	67,6	61,4	57,5	58,0	58,3	61,4	67,5

Fonte: INEMET, 1992. Normas Climatológicas 1961-1990.

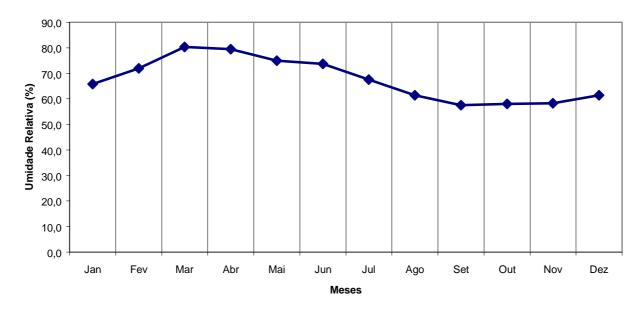


Figura 3.3.1: Distribuição da Umidade Relativa Média para a Estação de Morada Nova - CE ao longo do ano

3.4. VENTOS

Os ventos na estação de Morada Nova atingem as maiores velocidades médias no período de setembro a dezembro, cerca de 4 m/s. A direção dos ventos predominante é a leste – nordeste, praticamente para o ano todo, sem grandes variações.

Quandro 3.4.1: Valores médios anuais de velocidade do vento para a Estação de Morada Nova, CE.

Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Média
Velocidade do Vento (m/s)	3,5	2,8	2,4	2,2	2,4	2,7	3,0	3,5	3,9	4,0	4,1	4,0	3,2
Direção do Vento	ENe	ENe	ENe	SeE	ENe								

Legenda: E – Leste; Ne – Nordeste; Se – Sudeste.

Fonte: CEARÁ, SRH, 1992. Plano Estadual dos Recursos Hídricos.

3.5. REGIME PLUVIAL A NÍVEL ANUAL E MENSAL

Para a caracterização da precipitação na bacia hidrográfica do Açude Riacho da Serra, identificou-se como posto a ser utilizado nos estudos a estação do Açude Ema (código 3813532), como já justificado anteriormente. O Quadro 3.5.1 apresenta as principais características deste posto.

Quadro 3.5.1 - Características do Posto Pluviométrico utilizado para os estudos de precipitação na bacia do açude Riacho da Serra.

Código	Dosto	Município	Coord	lenadas	Elevação	Período de Observação		
	Posto		Latitude	Longitude	(m)	Mês/Ano Incial	Mês/Ano Final	
3813532	Ema (aç.)	Iracema	5°46' S	38°21' O	210	10/1931	12/1992	

A série de dados diários de chuva observados para o posto 3813532 contém 56 anos completos para o período de 1932 a 1988, excluindo-se o ano de 1986. O Quadro 3.5.2 apresenta os dados de precipitação para o posto utilizado em termos de totais mensais e anuais e a Figura 3.5.1 apresenta o hietograma mensal.

 ${\bf Quadro~3.5.2: Pluviometria~M\'edia~Mensal~-~Posto~Açude~Ema~(c\'odigo~3813532)}.$

Ano	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Anual
1932	111,8	32,6	57,1	44,2	1,7	30,7	1,5	0,0	9,7	0,0	0,0	0,0	289,3
1933	58,1	250,9	188,8	328,0	3,4	16,7	2,0	0,0	0,0	0,0	0,0	7,3	855,2
1934	42,4	428,7	437,8	198,2	207,4	25,7	0,0	0,0	0,0	0,0	3,5	36,9	1380,6
1935	46,1	232,8	178,6	272,5	246,0	91,0	10,9	0,0	0,0	0,0	0,0	0,0	1077,9
1936	10,0	308,8	116,2	71,3	116,3	110,5	2,0	0,0	0,0	0,0	0,0	0,0	735,1
1937	0,0	180,8	197,9	187,8	102,4	43,5	37,0	0,0	0,0	0,0	0,0	0,0	749,4
1938	5,7	9,8	317,1	316,5	89,8	2,1	0,0	0,0	0,0	0,0	2,2	1,8	745,0
1939	36,2	91,6	375,9	91,9	46,2	8,2	22,5	12,1	9,6	12,3	63,0	11,1	780,6
1940	65,1	230,4	362,8	298,3	312,7	41,2	18,2	21,3	0,0	0,0	0,0	0,0	1350,0
1941	1,5	55,3	143,6	213,9	0,0	0,0	31,5	6,8	1,5	0,0	0,0	0,0	454,1
1942	27,4	106,3	125,8	49,3	87,2	13,8	0,0	18,9	0,0	0,0	4,7	3,7	437,1
1943	49,1	141,8	211,3	92,9	51,8	19,6	67,3	20,9	0,0	0,0	0,0	10,8	665,5
1944	87,3	0,0	270,4	252,4	75,9	24,6	12,9	6,1	0,0	0,0	0,0	27,2	756,8
1945	112,4	276,8	155,2	194,7	156,7	52,3	45,3	0,0	1,1	0,0	0,0	22,0	1016,5
1946	156,7	84,9	311,2	213,9	82,2	21,0	0,0	0,0	0,0	0,0	0,0	89,7	959,6
1947	31,0	162,4	390,6	142,5	151,2	58,7	17,8	9,0	0,5	0,0	49,2	121,6	1134,5
1948	10,0	37,0	261,2	126,7	105,1	64,7	31,1	2,0	5,0	2,0	0,0	23,5	668,3
1949	10,0	33,9	187,8	133,7	263,1	80,6	2,5	9,3	0,0	0,0	45,6	30,0	796,5
1950	8,3	12,0	175,1	416,0	122,6	6,0	0,0	0,0	0,0	0,0	0,0	0,0	740,0
1951	70,0	25,0	93,0	150,0	54,0	172,0	0,0	0,0	0,0	30,0	0,0	79,0	673,0
1952	0,0	63,0	152,0	88,0	161,0	0,0	0,0	0,0	0,0	0,0	0,0	27,0	491,0
1953	0,0	7,0	66,0	304,0	175,0	44,0	6,0	0,0	0,0	0,0	15,0	0,0	617,0
1954	0,0	81,0	138,0	38,0	214,0	68,0	0,0	0,0	0,0	0,0	0,0	0,0	539,0
1955	60,0	106,0	154,0	257,0	88,0	49,0	0,0	0,0	0,0	0,0	0,0	0,0	714,0
1956	24,0	284,0	205,0	160,0	33,0	15,0	0,0	23,0	0,0	0,0	0,0	0,0	744,0
1957	72,9	0,0	309,4	314,0	51,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	747,3
1958	0,0	6,0	136,0	48,0	67,0	0,0	36,0	0,0	0,0	0,0	0,0	0,0	293,0
1959	90,0	210,0	135,0	116,0	194,0	78,0	0,0	0,0	0,0	0,0	0,0	0,0	823,0

Continuação do Quadro 3.5.2

Ano	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Anual
1960	0,0	12,0	352,0	179,0	90,0	25,0	24,0	0,0	0,0	0,0	0,0	0,0	682,0
1961	191,5	193,7	537,7	128,3	134,4	0,0	17,3	0,0	0,0	0,0	0,0	0,0	1202,9
1962	111,3	39,3	213,5	364,8	195,8	9,4	31,0	0,0	0,0	0,0	0,0	36,4	1001,5
1963	118,6	200,5	459,6	238,8	24,0	0,0	0,0	0,0	0,0	0,0	1,0	91,2	1133,7
1964	329,3	240,2	273,4	327,6	183,4	25,7	55,8	0,0	0,0	0,0	0,0	0,0	1435,4
1965	55,8	94,0	48,1	269,4	67,6	244,8	0,0	0,0	0,0	0,0	0,0	0,0	779,7
1966	0,0	67,2	86,3	139,0	142,0	30,3	100,2	37,4	0,0	0,0	0,0	0,0	602,4
1967	0,0	295,5	271,6	383,3	163,4	22,4	93,8	0,0	0,0	0,0	0,0	125,7	1355,7
1968	126,8	55,4	380,4	240,1	130,6	21,0	5,3	10,6	5,7	0,0	0,0	35,9	1011,8
1969	82,0	25,4	251,2	146,7	172,7	56,2	60,5	0,0	0,0	0,0	0,0	0,0	794,7
1970	54,2	69,2	262,4	137,1	14,4	20,6	22,2	0,0	0,0	2,2	0,0	0,0	582,3
1971	49,4	154,0	67,9	145,1	60,8	122,3	24,8	22,0	3,5	46,5	9,1	0,0	705,4
1972	34,6	187,2	246,1	318,2	30,2	74,4	55,1	0,0	0,0	0,0	0,0	86,7	1032,5
1973	138,9	65,2	195,8	272,6	84,8	161,6	27,3	0,0	15,0	0,0	0,0	8,2	969,4
1974	152,5	180,6	368,1	262,0	175,2	28,8	58,7	0,0	8,3	36,6	0,0	47,8	1318,6
1975	22,3	139,3	121,7	233,9	273,7	132,9	76,6	0,0	3,2	0,0	0,0	0,0	1003,6
1976	4,6	190,0	184,0	50,4	17,0	12,9	0,0	12,9	0,0	27,8	0,0	31,2	530,8
1977	208,4	112,5	172,0	264,7	148,9	159,2	56,1	0,0	0,0	0,0	0,0	0,0	1121,8
1978	7,5	99,1	159,1	123,8	241,9	61,7	57,0	0,0	35,2	0,0	0,0	18,2	803,5
1979	52,2	121,1	195,5	102,5	173,5	50,4	0,0	0,0	0,0	0,0	50,2	12,3	757,7
1980	114,8	376,3	203,6	85,5	35,5	62,5	0,0	0,0	0,0	0,0	0,0	11,2	889,4
1981	63,8	24,3	347,5	67,4	0,0	11,3	0,0	0,0	0,0	0,0	0,0	49,9	564,2
1982	15,2	77,5	95,8	172,4	203,5	34,1	6,1	0,0	0,0	42,3	0,0	9,2	656,1
1983	9,2	61,6	90,2	104,3	6,8	0,0	0,0	0,0	0,0	0,0	0,0	0,0	272,1
1984	10,6	60,3	436,8	459,4	153,9	40,8	25,8	25,6	23,5	0,0	0,0	0,0	1236,7
1985	279,6	117,6	248,7	370,9	209,4	92,1	74,2	10,5	0,0	0,0	0,0	5,1	1408,1
1987	49,5	19,5	255,5	206,4	77,8	20,4	8,5	0,0	0,0	0,0	0,0	0,0	637,6
1988	15,3	75,3	91,9	313,5	199,2	80,1	36,5	0,0	0,0	0,0	0,0	165,8	977,6
Média	62,2	121,7	222,7	200,5	119,1	48,9	22,5	4,4	2,2	3,6	4,3	21,9	833,9

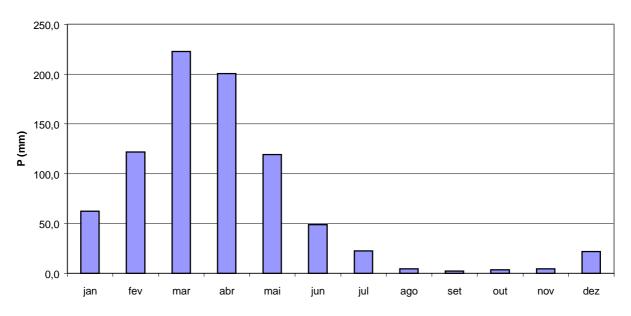


Figura 3.5.1: Hietograma de chuva média mensal para o posto Açude Ema (código 3813532).

De acordo com o Quadro 3.5.2 e a Figura 3.5.1, os dados mostram que a precipitação média anual na bacia é de 833,9 mm, sendo que cerca de 93% do total precipitado concentra-se no semestre Janeiro a Junho de cada ano. A quadra invernosa é representada pelos meses de fevereiro/março/abril/maio, na qual precipita cerca de 80% do total anual, sendo março o mês mais chuvoso. Fica caracterizado, portanto, o elevado índice de concentração temporal das precipitações na região. Considerou-se aqui o quadrimestre ao invés do trimestre para caracterizar o período invernoso, uma vez que os meses de fevereiro e maio apresentam, praticamente, o mesmo nível de precipitação, 121,7mm e 119,1mm, respectivamente.

Já o período menos chuvoso é concentrado no quadrimestre agosto/setembro/outubro/novembro, precipitando nestes meses em torno de 2% do total anual, sendo o mês com menor índice de precipitação setembro.

No Quadro 3.5.3 são apresentados os índices de concentração da precipitação para os níveis mensal, quadrimestral e semestral.

Quadro 3.5.3: Índices de Concentração Pluviométrica para a Série de Valores Médios Mensais do Posto Açude. Ema (código 3813532)

Mês Mais Chuvoso				Quadrimestre	Quadrimestre Mais Chuvoso				Semestre Mais Chuvoso			
CÓDIGO	Mês	P (mm)	P (%)	Quadrimestre	P (mm)	P (%)	Semestre	P (mm)	P (%)			
3813532	Março	222,7	26,7	Fev a Mai	663,9	79,6	Jan a Jun	775,0	92,9			

3.6. Evapotranspiração Potencial

Evapotranspiração potencial (ETP) é a quantidade de água transferida por superfície completamente coberta por plantas em pleno estágio de crescimento, vegetação de baixo porte e verde, usualmente pastos, e satisfatoriamente suprida de água. Quando considerada dependente do clima, pode ser estimada a partir de parâmetros climáticos, sendo os mais importantes a temperatura, a umidade relativa e um fator que pode ser calculado a partir da latitude (HARGREAVES, 1974).

O trabalho de HARGREAVES apresenta a seguinte fórmula para cálculo da ETP, ajustada às condições do Nordeste brasileiro:

$$ETP = MF \times 0.158 \times (100 - HM)^{1/2} \times (32 + 1.8T)$$

onde: $MF \Rightarrow$ é o fator mensal tabelado dependente da latitude;

HM ⇒ é a umidade relativa média mensal em %; e

 $T \Rightarrow$ é a temperatura média mensal em °C.

Para o estudo da ETP na região da bacia hidrográfica do açude Riacho da Serra, utilizaramse os valores calculados por HARGREAVES (1974) para o posto do açude Ema, código 3813532, os quais estão apresentados no Quadro 3.6.1 a seguir.

Quadro 3.6.1: Valores de Evapotranspiração Potencial - ETP para o Posto Açude Ema.

Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Total Anual
ETP (mm)	112	159	146	126	126	126	144	166	184	202	198	203	1892

Fonte: HARGREAVES, G.H. (1974).

3.7. EVAPORAÇÃO EM TANQUE CLASSE A

A evaporação média na área da barragem foi estimada em função dos dados de Tanque Classe A da estação climatológica de Morada Nova, obtidos da publicação do INEMET. Tais valores de evaporação estão apresentados no Quadro 3.7.1 e representados graficamente na Figura 3.7.1, na qual percebe-se que as maiores evaporações na região ocorrem no período de agosto a janeiro, com valores acima de 200 mm mensais. A lâmina d'água média anual evaporada é cerca de 2,2 metros.

Quadro 3.7.1: Dados de Evaporação Média Mensal – Tanque Classe A para a Estação de Morada Nova - CE.

Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Total Anual
Evaporação (mm)	207,7	149,8	87,7	90,1	112,4	128,7	179,6	243,8	246,7	279,3	259,9	249,5	2235,2

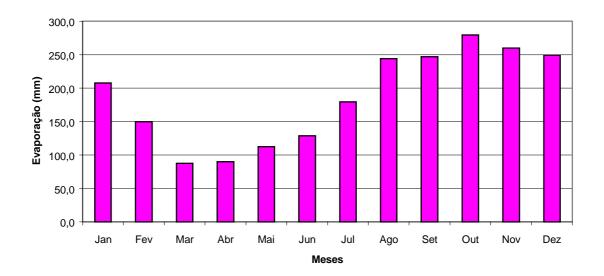


Figura 3.7.1: Evaporação Média Mensal - Tanque Classe A para a Estação de Morada Nova - CE.

3.8. SINOPSE CLIMÁTICA

Em síntese, o clima da bacia em estudo é caracterizado pelos indicadores do quadro a seguir.

INDICADOR	ÍNDICE
Pluviometria média anual	834 mm
Semestre chuvoso e índice de concentração	Jan/Jun
Trimestre úmido	Mar/Maio
Trimestre seco	Set/Nov
Mês de maior pluviosidade	Março
Temperatura média anual	27,1 °C
Média das temperaturas mínimas	21,9 °C
Média das temperaturas máximas	33,8 °C
Amplitude das médias extremas	22,7 °C
Umidade relativa média anual	67,5 %
Período de maior umidade relativa	Março
Período de menor umidade relativa	Setembro
Insolação anual	2983 h
Período de maior insolação	Outubro
Período de menor insolação	Abril
Ventos de 1ª predominância	Este/Nordeste
Velocidade média dos ventos	3,2 m/s
Evaporação média anual em tanque classe A	2235 mm
Período de maior evaporação	Out/Nov
Período de menor evaporação	Mar/Abr
ETP média anual	1892 mm

4. ESTUDO DE CHUVAS INTENSAS

4. ESTUDOS DE CHUVAS INTENSAS

Os principais tipos de precipitações da região são em decorrência da elevação brusca das massas de ar por efeito térmico ou lenta, neste caso quando a massa de ar encontra obstáculos topográficos.

A probabilidade de ocorrência de dias chuvosos no período úmido é considerável. Em regiões de influência orográfica a ocorrência de até vinte dias chuvosos no mês não são incomuns.

Na análise hidrológica de prováveis obras hidráulicas, os eventos de alta freqüência assumem uma importância maior com relação aos de baixa. Aqui foi utilizada a série anual de máximos diários da estação Açude Ema (código 3813532), por dispor de maior registro de dados e estar localizada na bacia do açude em questão. Na realidade é a única estação com dados disponíveis em quantidade desejável.

4.1. CHUVAS MÁXIMAS DIÁRIAS

A série de máximas diárias observadas é apresentada a seguir no Quadro 4.1.1.

Quadro 4.1.1 - MÁXIMAS PRECIPITAÇÕES ANUAIS - Posto Açude Ema

ANO	1 DIA	2 DIAS	3 DIAS
1931	-	-	-
1932	31.10	33.00	39.50
1933	82.90	109.40	109.40
1934	150.00	219.10	266.40
1935	85.60	110.80	126.90
1936	65.00	115.00	122.00
1937	78.80	80.30	135.30
1938	74.80	142.10	157.40
1939	109.30	160.90	170.40
1940	103.30	103.30	115.80
1941	52.20	68.10	78.70
1942	87.20	87.20	87.20
1943	67.30	85.70	86.80
1944	87.20	88.10	117.20
1945	72.50	88.00	90.00
1946	72.50	87.70	91.40
1947	70.40	90.10	100.90
1948	98.20	98.20	98.20
1949	73.20	80.60	81.40
1950	64.60	94.00	134.00
1951	70.00	110.00	110.00
1952	77.00	87.00	115.00
1953	98.00	98.00	98.00
1954	63.00	96.00	96.00
1955	76.00	126.00	147.00
1956	72.00	96.00	105.00
1957	59.00	88.00	105.00
1958	50.00	50.00	50.00
1959	70.00	80.00	130.00
1960	80.00	122.00	152.00
1961	57.40	95.00	137.00
1962	92.00	161.00	193.00
1963	84.00	99.60	141.60
1964	46.10	74.80	93.80
1965	69.10	69.10	117.60
1966	77.90	77.90	86.30
1967	83.50	105.90	113.90
1968	54.60	106.60	132.50
1969	63.70	77.00	94.40

Continuação do Quadro 4.1.1

ANO	1 DIA	2 DIAS	3 DIAS
1970	62.10	111.10	111.10
1971	76.50	76.50	85.70
1972	139.60	156.20	156.20
1973	64.20	73.80	73.80
1974	53.80	85.40	113.10
1975	73.10	90.60	140.10
1976	63.20	64.30	76.40
1977	-	-	-
1978	70.30	70.30	101.00
1979	61.30	107.80	107.80
1980	66.40	77.50	102.80
1981	52.30	90.00	118.30
1982	86.30	91.50	100.90
1983	-	-	-
1984	101.70	137.30	153.80
1985	83.50	126.00	126.00
1986	-	-	-
1987	46.60	69.40	82.30
1988	155.00	155.00	155.00
1991	-	-	-
1992	-	-	-

Diversas distribuições podem ser utilizadas como teóricas para as freqüências observadas. Depois de comparar diversas distribuições, foi escolhida a Lognormal de 3 parâmetros como a que melhor se ajustou, cujas estimativas para vários períodos de retorno encontram-se no Quadro 4.1.2. Os ajustes e os testes de aderência podem ser observados nas saídas computacionais mostradas nas páginas a seguir.

Quadro 4.1.2 - Análise de Freqüência de Máximos Diários de Chuva.

Distribuição Lognormal de 3 parâmetros

Posto Pluviométrico: 3813532

TR (anos)	P(1dia)
100	158
1000	219
10000	295

Estudo Estatístico de Chuvas Máximas POSTO :3813532

Estudo Estatistico de Chuvas Maximas POSTO :3813532

SAMPLE SIZE = 54

STATISTICS OF THE OBSERVED VALUES

MEAN = 76.39 STD. DEV. = 23.42 COEF. OF SKEW = 1.5096

STATISTICS OF THE NATURAL LOGARITHMS

MEAN = 4.29493 STD. DEV. = .28539 COEF. OF SKEW. = .1817

STATISTICS OF THE BASE 10 LOGARITHMS

MEAN = 1.86526 STD. DEV. = .12395 COEF. OF SKEW. = .1790

FREQUENCY DISTRIBUTION

RETURN	TRUNCATED	2-PARAMETER	3-PARAMETER	TYPE I	TYPE I LOG-	PEARSON	LOG PEARSON
PERIOD	NORMAL	LOGNORMAL	LOGNORMAL	EXTREMAL	EXTREMAL	TYPE III	TYPE III
(YRS)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
2.00	76.39	73.33	71.67	72.71	70.11	70.87	72.70
2.33	80.59	77.18	75.43	76.97	73.84	74.73	76.53
5.00	96.26	93.42	92.46	95.46	92.50	92.57	93.15
10.00	106.78	106.20	107.09	110.52	111.14	107.90	106.77
20.00	115.60	118.24	121.82	124.96	132.54	123.05	120.04
50.00	125.70	133.73	142.05	143.66	166.46	143.20	137.71
100.00	132.56	145.40	158.19	157.68	197.47	158.73	151.49
500.00	146.86	173.09	199.41	171.64	234.09	196.15	185.70
1000.00	152.53	185.45	219.09	190.06	293.01	212.98	201.69
10000.0	169.97	229.39	294.97	203.98	347.19	272.64	261.95

Estudo Estatistico de Chuvas_R_Serra

	GT 7 G G			0 01011/1770	~	DISTRIBUTION		DE1 D G 011	T 0.0
PEARSO	CLASS		TRUNCATED	2-PARAMETER	3-PARAMETER	TYPE I	TYPE I LOG-	PEARSON	LOG
I	NTERVAL	PROBABILITY	NORMAL	LOGNORMAL	LOGNORMAL	EXTREMAL	EXTREMAL	TYPE III	TYPE
III			(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(
mm)	0	.00000	.00	.00	.00	.00	.00	.00	
53.92	1	.14286	51.40	54.07	54.55	51.99	54.46	57.07	
61.76	2	.28571	63.14	62.39	61.59	60.83	60.66	64.08	
68.77	3	.42857	72.18	69.65	68.18	68.68	66.75	71.17	
76.19	4	.57143	80.61	77.19	75.45	77.00	73.87	79.28	
85.25	5	.71429	89.65	86.18	84.65	87.21	83.66	89.69	
99.04	6	.85714	101.39	99.44	99.23	102.88	101.26	106.10	
INFINI	7 .TY	1.00000	INFINITY	INFINITY	INFINITY	INFINITY	INFINITY	INFINITY	
5.111	CHI-SQUA	RE VALUE	10.296	5.630	4.593	12.111	5.630	5.111	

95% CHI-SQUARE TEST STATISTIC =12.596

Estudo Estatistico de Chuvas_R_Serra

4.2. CHUVAS INTENSAS

Na análise hidrológica de prováveis obras hidráulicas, os eventos de alta freqüência assumem uma importância maior com relação aos de baixa. Aqui foram utilizadas séries anuais de máximos diários escolhidos entre os "n" maiores valores disponíveis na série histórica de cada posto.

Para projetos de obras hidráulicas, em geral, é importante a caracterização do regime pluviométrico em intervalos de tempo inferiores a 24 horas. A definição da vazão de projeto, por exemplo, de canais integrantes da rede de drenagem, obras d'arte, está vinculada a determinação da relação precipitação-duração-freqüência.

Na área em estudo não existem registros de pluviógrafos, o aparelho mais comum nas estações pluviométricas é o pluviômetro, que é capaz de registrar a "precipitação de 1 dia". Isto impossibilita o uso da metodologia convencional, na qual, a partir de chuvas intensas de várias durações registradas em pluviogramas, estabelece-se uma equação que relaciona intensidade-duração-freqüência para a área de representatividade do aparelho.

Como alternativa ao método tradicional (através de pluviógrafos), têm-se o Método das Isozonas.

4.2.1. Método das Isozonas (TORRICO, 1975)4.

Este método consiste na desagregação da chuva de 1 dia em 24 horas e a partir desta em durações menores.

A desagregação da chuva de 24 horas em chuvas de intervalos de tempo de menor duração consiste nas seguintes etapas de cálculo:

- 1. multiplicar a chuva de um dia de duração por 1.10 para obter-se a chuva pontual de 24 horas;
- 2. determinar a isozona onde está localizado o centro de gravidade da bacia hidrográfica a barragem está localizada dentro da isozona G (figura 4.2.1);

⁴TORRICO, J.T., 1975. PRÁTICAS HIDROLÓGICAS, 2^a. Ed., TRANSCOM, RIO DE JANEIRO.

- 3. estimar para os diferentes períodos de retorno, a chuva de 1 hora de duração a partir da chuva de 24 horas, através da multiplicação pelo fator R_{1h} ;
- 4. plotar os valores P_{24h} e P_{1h} em papel probabilístico para obter as chuvas de durações intermediárias.

Aplicou-se a metodologia acima descrita para a chuva média máxima da estação em estudo. Esses resultados são apresentados nos quadros a seguir.

Estudo de Chuvas Intensas - Precipitações em mm

Posto Pluviométrico: 3813532 ISOZONA: G

TR (anos)	P(1dia)	P(24h)	P(1h)	P(6min)
100	158	174	80	24
1000	219	241	107	33
10000	295	325	140	44

Deve-se reduzir a chuva pontual para a chuva em toda bacia pela relação:

Pa/Po = [1 - 0.20.log(A/Ao)]

sendo:

Pa - Precipitação na área da bacia

Po - Precipitação pontual no posto pluviométrico

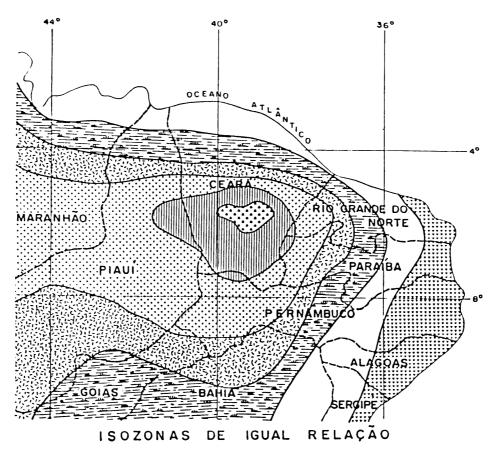
A - Área da bacia (km2)

Ao - Área de influência do posto pluviométrico (25 km2)

Para o açude têm-se:

 $Pa/Po = [1-0.20.\log(173/25)] = 0.83$

O Quadro de precipitações intensas para a Bacia Hidrográfica fica então, multiplicando-se os valores acima pelo coeficiente encontrado:



Precipitações na Bacia do Açude Riacho da Serra

TR (anos)	P(1dia)	P(24h)	P(1h)	P(6min)
100	131	145	66	20
1000	182	200	89	27
10000	245	270	116	37

Os valores marcados do quadro são então plotados no papel especial, obtendo-se o gráfico apresentado na figura 4.2.2.

	TEMPO DE RECORRÊNCIA EM ANOS												
			1 HORA / 24 HORAS CHUVA 24h CHUVA										HUVA
150	DZONA	5	10	15	20	25	30	50	100	1.000	10.000	5-50	100
8		38,1	37,8	37, 4	37,4	37,3	37,2	36,9	36,6	35,4	34,3	8,4	7,5
С		40,1	39,7	39,5	39,3	39,2	39,1	38,0	39,4	37,2	36,2	9,6	9,0
D		42,0	41,6	41,4	41,2	41,1	41,0	40,7	40,3	39,0	37,8	11,2	10,0
E	泛統統領	44,0	43,6	43,3	43,2	43,0	42,2	42,6	42,2	40,9	39, 6	12,6	11,2
F		46,0	45,5	45, 3	45,1	44,9	44,8	44,5	44,1	42,7	41,3	13,8	12,4
G		479	47,4	47,2	47,0	46,0	46,7	46,4	45,9	44,5	43,1	15,4	13,7
н		49,9	49,4	49, 1	48,9	48,8	48, 6	48,3	47,0	46,3	44,8	16,7	14,9

Figura 4.2.1 - Método das Isozonas de Taborga.

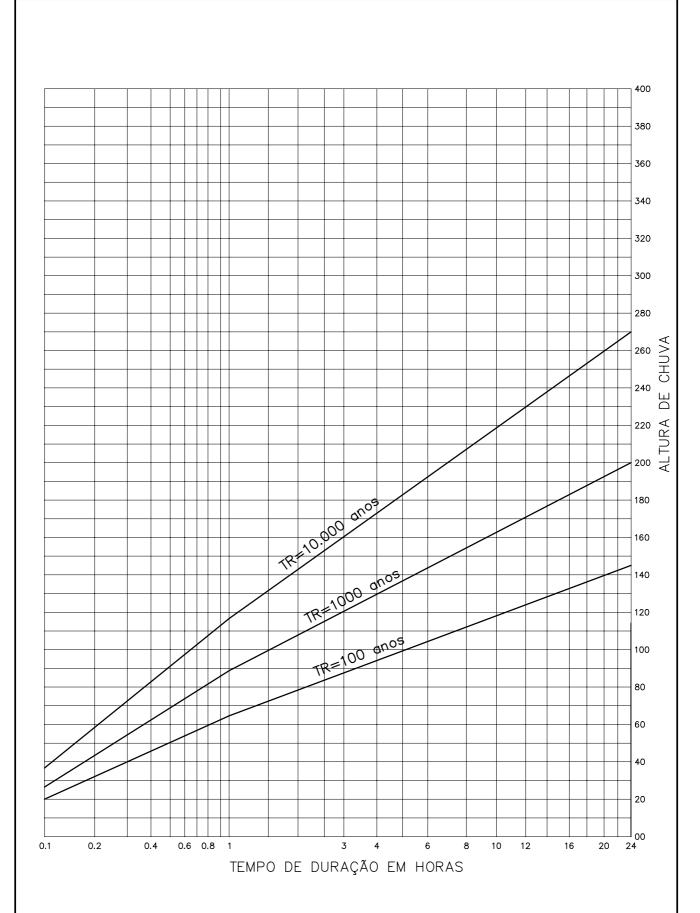


FIGURA 4.2.2 - BACIA AÇUDE RIACHO DA SERRA (POSTO: 3813532)

CURVAS PRECIPITAÇÃO-DURAÇÃO-FREQUÊNCIA

MÉTODO DAS ISOZONAS

5. ESTUDO DE DEFLÚVIOS

5. ESTUDO DE DEFLÚVIOS

A estimativa das vazões afluentes mensais ao açude foi realizada objetivando fornecer elementos para a simulação da operação e, consequentemente, o dimensionamento do reservatório.

A bacia hidrográfica do açude Riacho da Serra não possui estação fluviométrica. O Plano de Gestão das Águas da Bacia do Jaguaribe, trabalho realizado pela Engesoft para a COGERH, estudou as séries em toda a bacia e sub-bacias do Jaguaribe, inclusive a bacia do Riacho da Serra. A série do açude, portanto, foi retirada do referido estudo.

A série, em m³/s, pode ser visualizada no Quadro 5.1 a seguir.

Quadro 5.1 - Vazões Mensais Afluentes ao Açude Riacho da Serra (m^3/s)

ANO	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ	MÉDIA
1913	0.0	2.0	0.6	1.2	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.4
1914	1.6	0.4	0.1	1.9	0.8	0.3	1.3	0.2	0.0	0.0	0.0	0.0	0.6
1915	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1916	0.0	0.0	3.4	2.3	2.8	0.4	0.1	0.0	0.0	0.0	0.0	0.0	0.8
1917	0.0	2.8	8.0	7.8	5.5	0.6	0.3	0.0	0.0	0.0	0.0	0.0	2.1
1918	0.0	1.3	4.0	4.6	8.8	4.5	0.4	0.1	0.0	0.0	0.0	0.0	2.0
1919	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1920	0.0	0.0	13.4	9.8	3.9	0.6	0.5	0.1	0.0	0.0	0.0	0.0	2.4
1921	0.0	0.0	16.1	8.5	13.5	0.5	0.2	0.0	0.0	0.0	0.0	0.0	3.2
1922	0.0	0.0	1.3	17.0	6.0	1.0	0.5	0.2	0.0	0.0	0.0	0.0	2.2
1923	0.0	1.8	2.4	5.5	0.5	0.9	0.3	0.0	0.0	0.0	0.0	0.0	1.0
1924	0.0	1.7	12.2	18.2	0.8	0.6	0.4	0.1	0.0	0.0	0.0	0.0	2.8
1925	0.0	1.2	6.2	8.0	3.4	0.5	0.2	0.0	0.0	0.0	0.0	0.0	1.6
1926	0.0	0.0	5.2	11.8	7.1	0.5	0.2	0.0	0.0	0.0	0.0	0.0	2.1
1927	0.0	2.8	3.9	2.7	0.5	0.4	0.2	0.0	0.0	0.0	0.0	0.0	0.9
1928	0.0	0.0	10.4	5.1	2.2	0.5	0.2	0.0	0.0	0.0	0.0	0.0	1.5
1929	0.0	4.6	12.3	17.4	0.6	0.5	0.2	0.0	0.0	0.0	0.0	0.0	3.0
1930	0.0	0.0	1.9	2.5	0.3	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.4
1931	0.0	0.0	0.5	3.6	1.3	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.5
1932	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1933	0.0	2.4	1.1	5.5	0.5	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.8
1934	0.0	5.9	13.5	7.2	6.2	0.6	0.3	0.0	0.0	0.0	0.0	0.0	2.8
1935	0.0	1.2	0.4	4.2	3.3	1.0	0.3	0.0	0.0	0.0	0.0	0.0	0.9
1936	0.0	2.8	1.5	0.2	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.4
1937	0.0	0.0	1.7	2.3	0.4	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.4
1938	0.0	0.0	3.7	5.0	0.9	0.4	0.1	0.0	0.0	0.0	0.0	0.0	0.8
1939	0.0	0.0	4.7	0.3	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.5
1940	0.0	0.7	6.2	9.9	13.5	0.6	0.3	0.0	0.0	0.0	0.0	0.0	2.6
1941	0.0	0.0	0.7	1.4	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
1942	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1943	0.0	0.0	1.3	2.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3
1944	0.0	0.0	2.4	3.9	0.8	0.4	0.1	0.0	0.0	0.0	0.0	0.0	0.6
1945	0.0	2.9	0.4	1.8	2.8	0.4	0.2	0.0	0.0	0.0	0.0	0.0	0.7
1946	0.0	0.0	2.1	2.9	1.1	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.5
1947	0.0	0.0	5.6	1.2	2.3	0.5	0.2	0.0	0.0	0.0	0.0	0.0	0.8
1948	0.0	0.0	1.9	1.1	0.3	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.3
1949	0.0	0.0	1.0	0.8	2.7	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.4
1950	0.0	0.0	0.9	7.0	1.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0	0.8

Continuação do Quadro 5.1

ANO	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ	MÉDIA
1951	0.0	0.0	0.0	1.8	0.1	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.2
1952	0.0	0.0	0.1	1.4	1.6	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.3
1953	0.0	0.0	0.0	4.2	2.0	0.4	0.1	0.0	0.0	0.0	0.0	0.0	0.6
1954	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1955	0.0	0.0	0.0	3.2	0.4	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.3
1956	0.0	2.0	1.9	2.2	0.4	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.6
1957	0.0	0.0	3.2	5.6	0.6	0.4	0.1	0.0	0.0	0.0	0.0	0.0	0.8
1958	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1959	0.0	1.8	0.7	0.5	2.3	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.5
1960	0.0	0.0	4.0	2.1	0.4	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.6
1961	1.2	0.1	10.0	6.3	0.6	0.5	0.2	0.0	0.0	0.0	0.0	0.0	1.6
1962	0.0	0.0	0.6	3.7	1.0	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.5
1963	0.0	0.0	4.6	2.1	0.5	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.6
1964	0.0	1.1	3.7	7.8	6.0	0.6	0.3	0.0	0.0	0.0	0.0	0.0	1.6
1965	0.0	0.0	0.0	3.5	1.3	0.8	0.2	0.0	0.0	0.0	0.0	0.0	0.5
1966	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1967	0.0	0.0	5.2	10.8	7.2	0.6	0.3	0.0	0.0	0.0	0.0	0.0	2.0
1968	0.0	0.0	4.2	1.9	2.7	0.5	0.2	0.0	0.0	0.0	0.0	0.0	0.8
1969	0.0	0.0	1.0	2.0	0.4	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.3
1970	0.0	0.0	1.9	0.5	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
1971	0.0	0.0	0.0	0.7	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1
1972	0.0	0.0	0.0	3.6	0.3	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.4
1973	0.0	0.0	0.5	3.7	0.4	0.4	0.3	0.1	0.0	0.0	0.0	0.0	0.4
1974	0.0	0.0	4.1	7.2	5.5	0.6	0.3	0.0	0.0	0.0	0.0	0.0	1.5
1975	0.0	0.0	1.0	2.0	3.4	0.4	0.4	0.1	0.0	0.0	0.0	0.0	0.6
1976	0.0	0.0	0.1	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1977	0.0	0.0	1.0	2.1	2.0	0.4	0.3	0.0	0.0	0.0	0.0	0.0	0.5
1978	0.0	0.0	0.9	0.1	1.8	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.2
1979	0.0	0.0	0.2	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
1980	0.0	2.1	2.8	0.3	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.5
1981	0.0	0.0	3.8	1.1	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4
1982	0.0	0.0	0.0	0.6	1.6	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.2
1983	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1984	0.0	0.0	4.2	14.3	1.4	0.6	0.3	0.0	0.0	0.0	0.0	0.0	1.7
1985	0.6	3.0	4.1	19.6	4.7	0.6	0.5	0.1	0.0	0.0	0.0	0.0	2.8
1986	0.0	0.0	3.7	4.3	1.5	1.2	0.5	0.1	0.0	0.0	0.0	0.0	0.9
1987	0.0	0.0	5.6	2.9	0.5	0.4	0.1	0.0	0.0	0.0	0.0	0.0	0.8
1988	0.0	0.0	0.0	3.8	2.1	0.4	0.2	0.0	0.0	0.0	0.0	0.0	0.5
1989	0.0	0.0	0.8	5.2	2.3	0.5	0.3	0.1	0.0	0.0	0.0	0.0	0.8

Continuação do Quadro 5.1

ANO	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ	MÉDIA
1990	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1991	0.0	0.0	2.3	0.3	1.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.3
1992	0.5	0.1	2.2	3.2	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.5
1993	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1994	0.0	0.0	2.0	1.4	0.3	1.9	0.3	0.0	0.0	0.0	0.0	0.0	0.5
1995	0.0	0.0	1.2	3.0	2.3	0.4	0.3	0.0	0.0	0.0	0.0	0.0	0.6
1996	0.0	0.0	0.0	5.2	2.1	0.4	0.1	0.0	0.0	0.0	0.0	0.0	0.6
MÉDIA	0.0	0.5	2.8	3.9	1.9	0.4	0.2	0.0	0.0	0.0	0.0	0.0	0.8
D. P	0.23	1.14	3.56	4.42	2.66	0.55	0.19	0.04	0.00	0.00	0.00	0.00	0.81
CV	4.86	2.14	1.28	1.13	1.41	1.37	1.25	2.31	9.17			6.44	0.99

6. ESTUDO DAS CHEIAS DE PROJETO

6. ESTUDO DAS CHEIAS DE PROJETO

A determinação da cheia de projeto para dimensionamento do sangradouro pode ser realizada com base em dados históricos de vazão (métodos diretos) e com base na precipitação (métodos indiretos), estando em ambos os casos associados a um risco previamente escolhido. Diante da escassez de registros históricos de vazões, é mais usual a determinação do hidrograma de projeto com base na precipitação.

O estudo da cheia de projeto é de fundamental importância para a segurança e economia da barragem, podendo o hidrograma de projeto estar baseado em:

- PMP (precipitação máxima provável) para projetos de importantes obras hidráulicas:
- cheia padrão para obras hidráulicas de risco intermediário;
- precipitações associadas a um risco ou probabilidade de ocorrência.

Em barragem pequenas e médias, onde grandes riscos não estão envolvidos, pode-se utilizar o hidrograma de projeto baseado no último caso, podendo o período de retorno de 1.000 anos ser suficiente para dimensionamento do sangradouro.

6.1. METODOLOGIA

Os métodos estatísticos de obtenção de vazões máximas que se utilizam séries históricas de vazões observadas, procedimento comum para bacias naturais, não podem ser aplicados pela escassez de dados ou, ainda, sua inexistência. Esta falta de dados dos eventos na bacia a ser estudada indicaram a escolha de métodos de transformação chuva-deflúvio como metodologia a ser adotada.

A metodologia procura descrever as diversas hipóteses de cálculo da cheia de projeto: a escolha da chuva de projeto, o hietograma utilizado, a definição da precipitação efetiva, o

hidrograma da cheia na bacia e, por fim, o seu amortecimento no sangradouro. A ferramenta utilizada para a implementação desta metodologia foi o programa HEC-1^{5.}

As relações chuva-deflúvio para a bacia do Açude Riacho da Serra foram estabelecidas utilizando-se o modelo HEC-1, um modelo projetado para simular o escoamento superficial em uma bacia, sendo esta representada como um sistema de componentes hidrológicos e hidráulicos. Para esta bacia foi estudada a sua resposta ao hietograma de projeto correspondentes a 1.000 anos e 10.000 anos de tempo de retorno.

O modelo HEC-1 permite o uso de várias metodologias para determinação da chuva efetiva, simulação do escoamento superficial em bacia (*overland flow*) e propagação do escoamento em canais e reservatórios. No caso da bacia do Riacho da Serra, diante dos dados disponíveis, foi adotado o seguinte:

- Método Curva-Número (*Soil Conservation Service*) na determinação da chuva efetiva:
- Método do Soil Conservation Service na determinação do hidrograma unitário sintético - Escoamento Superficial na bacia (Overland flow);
- Método de Puls para propagação do escoamento em reservatórios.

6.1.1. Precipitação

Para cálculo do escoamento superficial para a bacia foi assumida uma precipitação uniformemente distribuida sobre a referida bacia. O HEC-1 permite a entrada de tormentas históricas ou sintéticas, sendo as últimas freqüentemente utilizadas para planejamento e estudos de projetos.

O hietograma adotado baseia-se nas curvas altura-duração-freqüência obtida nos estudos hidroclimatológicos. O Quadro 6.1 apresenta a chuva de projeto, obtida partir das curvas precipitação-duração-freqüência e a precipitação associada aos tempos de retorno de 1.000 e 10.000 anos para as durações de 5 min, 15 min, 60 min, 2 h, 3 h, 6 h e 12 h e 24h.

Relatorio_Hidrologia_R_Serra 58

_

 $^{^{5}}$ US ARMY CORPS OF ENGINEERS - HYDROLOGIC ENGINEERING CENTER, 1990. HEC-1 FLOOD HYDROGRAPH PACKAGE - USERS MANUAL, 415 p.

Quadro 6.1 - Chuva de Projeto na Bacia do Açude Riacho da Serra

Intervalo de Tempo	P(mm) 1.000 Anos	P(mm) 10.000 Anos
5 min	26	38
15 min	48	65
1 h	89	116
2 h	108	143
3 h	120	160
6 h	143	192
12 h	170	230
24h	200	270

O hietograma de projeto tem uma duração superior ao tempo de concentração da bacia, estimado aqui pela fórmula do Califórnia Highways, também conhecida como fórmula de Kirpich:

$$T_C = 57 \cdot \left(\frac{L^3}{\Delta H}\right)^{0.385}$$

onde T_C = tempo de concentração em minutos; L = comprimento do maior talvegue em km; ΔH = diferença de elevação entre o ponto mais remoto da bacia e o exutório. Logo, para a bacia do açude tem-se:

Seção Riacho da Serra: L = 49,6 km

 $\Delta H = 555 \text{ m}$

o que resulta $T_C = 7.6 \text{ h}$; $T_{LAG} = 4.6 \text{ h}$.

O HEC-1 utiliza estes dados para construir uma distribuição triangular da precipitação, onde é assumido que cada total precipitado para qualquer duração ocorre durante a parte central da tormenta (tormenta balanceada). Alturas correspondentes a 10 e 30 minutos são interpoladas das alturas precipitadas de 5, 15 e 60 minutos através das equações do HYDRO-35 (National Weather Service, 1977):

$$P_{10min} = 0.41.P_{5min} + 0.59.P_{15min}$$

$$P_{30min} = 0.51.P_{15min} + 0.49.P_{60min}$$

onde P_n é a precipitação para a duração de n minutos.

6.1.2 - Precipitação Efetiva

O modelo HEC-1 refere-se a interceptação superficial, armazenamento em depressões e infiltração como perdas de precipitação, ou seja, a parcela da precipitação que não contribui para gerar escoamento é considerada perda, sendo o restante, considerado precipitação efetiva.

O cálculo das perdas de precipitação podem ser usadas nos outros componentes do modelo HEC-1, em especial, hidrograma unitário. No caso do hidrograma unitário, estas perdas são consideradas uniformemente distribuídas sobre a bacia (ou sub-bacia)

De maneira geral, existem três metodologias utilizadas para determinação da chuva efetiva: equações de infiltração, índices e relações funcionais. Especificamente, o HEC-1 possibilita o uso de 5 métodos: 1) taxa de perda inicial e uniforme; 2) taxa de perda exponencial; 3) Curva-Número; 4) Holtan; 5) Função de Infiltração Green e Ampt. Foi considerado mais adequado, diante dos dados disponíveis, o método curva número do *Soil Conservation Service*.

O método Curva Número é um procedimento desenvolvido pelo Serviço de Conservação do Solo USDA, no qual a lâmina escoada (isto é, a altura de chuva efetiva) é uma função da altura total de chuva e um parâmetro de abstração denominado Curva-Número, *CN*. Este coeficiente varia de 1 a 100, sendo uma função das seguintes propriedades geradoras de escoamento na bacia: (1) tipo de solo hidrológico; (2) uso do solo e tratamento; (3) condição da superfície subterrânea, e (4) condição de umidade antecedente.

A equação de escoamento do SCS é dada por:

$$Q = \frac{(P - I_a)^2}{(P - I_a) + S} \tag{1}$$

onde Q = escoamento

P = precipitação

S = capacidade máxima de armazenamento do solo

Ia = perdas antes do início do escoamento.

As perdas antes do início do escoamento (I_a) incluem água retida em depressões superficiais, água interceptada pela vegetação, evaporação, e infiltração. I_a é altamente variado, mas a partir de dados de pequenas bacias I_a é aproximado pela seguinte relação empírica:

$$I_a = 0.20.S$$
 (2)

Substituindo (2) em (1) elimina-se I_a , resultando em:

$$Q = \frac{(P - 0.20.S)^2}{P + 0.80.S}$$

onde S está relacionado às condições de solo e cobertura através do parâmetro CN por:

$$S = \frac{25400}{CN} - 254 \quad \text{(unidades métricas)}$$

onde CN varia de 0 a 100. CN foi tabelado para diferentes tipos de solos e cobertura, sendo estes valores tabelados apresentados para condições de umidade antecedente normal (AMC II). Para condições secas (AMC I) e úmidas (AMC III), CNs equivalentes podem ser calculados pelas seguintes fórmulas:

CONDIÇÕES SECAS

CONDIÇÕES ÚMIDAS

$$CN (I) = \frac{4,2.CN(II)}{10 - 0,058.CN(II)} \qquad CN (III) = \frac{2,3.CN(II)}{10 + 0,13.CN(II)}$$

Alternativamente, os CNs para estas condições podem ser obtidos, a partir da condição normal (AMC II), utilizando-se tabelas⁶.

Desde que o método do SCS dá o excesso total para uma tormenta, o excesso incremental de precipitação para um período de tempo é calculado como a diferença entre o excesso acumulado no fim do presente período e o acumulado do período anterior.

O CN para a bacia do Riacho da Serra foi estimado em 82, de acordo com o Quadro 6.1.1 a seguir (ver Capítulo 2)

 $^{^{6}\,}$ PONCE, V.M., 1989. ENGINEERING HYDROLOGY: PRINCIPLES AND PRACTICES. PRENTICE HALL, NEW JERSEY, 640 p.

Quadro 6.1.1 - Estimativa do Parâmetro CN

USO SOLO - IMAGEM	USO SOLO - CN	PERMEABILIDADE/ÁREA (m2)	PONDER	AÇÃO CN
		D	CN	PESO
Áreas Irrigadas e Agrícola	Plantações regulares em fileiras retas	1.366,200	88	0.01
Caatinga Arbórea Densa	Florestas Normais	40.649,400	76	0.24
Caatinga Herbáceo Arbustiva	Florestas Esparsas	115.759,800	84	0.69
Solo Exposto	Estradas de terra de superfície dura	17.100	92	0.00
Área Alterada/Antropizada	Pastagens ou terrenos em más condições	11.101,500	89	0.07
	TOTAL ÁREA	168.894,000		
	CN GERAL		8	2

6.1.3. Hidrograma Unitário - SCS

A técnica do hidrograma unitário é usada para transformar a precipitação efetiva em escoamento superficial de uma sub-bacia. Este método foi escolhido por ter sido idealizado para bacias de áreas entre 2,5 e 1000 km2, e por ser construído exclusivamente a partir de informações hidrológicas. Além disto, este modelo necessita apenas de um parâmetro: o T_{LAG}. Este parâmetro, T_{LAG}, é igual à distância (*lag*) entre o centro de massa do excesso de chuva e o pico do hidrograma unitário. A vazão de pico e o tempo de pico são calculados por:

$$Q_p = 208. \frac{A}{t_p} \qquad t_p = \frac{\Delta t}{2} + t_{LAG}$$

onde Q_p = é a vazão de pico (m3/s), t_p = tempo de pico do hidrograma (h), A = área da bacia em km2 e Dt = o intervalo de cálculo.

Uma vez determinados estes parâmetros e o intervalo de cálculo (duração do hidrograma unitário), o HEC-1 utiliza estes para interpolar um hidrograma unitário a partir de um hidrograma unitário adimensional do SCS. A seleção do intervalo de cálculo é baseado na relação $Dt=0,20.\ t_p$, não devendo exceder $0,25.t_p$. Estas relações baseiam-se nas seguintes relações empíricas;

$$t_{lag} = 0.60.T_c$$
 e 1.7. $t_p = Dt + T_c$

onde T_c = é o tempo de concentração da bacia. O HEC-1 sugere que Dt \leq 0,29. T_{LAG} . Para cálculo do hidrograma de projeto por esta metodologia, é necessário uma estimativa do tempo de concentração da bacia. Estes tempos de concentração foram avaliados através da aplicação da fórmula de Kirpich (item 6.1.1).

6.2. Propagação da Cheia no Reservatório

Técnicas de propagação em reservatórios são baseadas no conceito de armazenamento, sendo o método de Puls um dos mais conhecidos para propagação em reservatórios. Este método consiste em uma expressão discretizada da equação de continuidade concentrada e na relação entre vazão e armazenamento.

A equação discretizada da continuidade é dada por;

$$\frac{S_{t+1} - S_t}{\Delta t} = \frac{I_t + I_{t+1}}{2} - \frac{Q_t + Q_{t+1}}{2} \tag{1}$$

onde I_t e I_{t+1} = vazões afluentes ao reservatório em t e t+1; Q_t e Q_{t+1} = vazões de saída ao reservatório em t e t+1; S_t e S_{t+1} = armazenamento em t e t+1; D_t = intervalo de tempo. As incógnitas Q_{t+1} e S_{t+1} podem ser colocadas em um mesmo lado, resultando em:

$$Q_{t+1} + 2.\frac{S_{t+1}}{\Delta t} = I_t + I_{t+1} - Q_t + 2.\frac{S_t}{\Delta t}$$
 (2)

Conhecendo-se a função Q=f (S), constrói-se uma função Q=h (Q+2S/Dt), resultando no seguinte processo de cálculo:

- 1. Determina-se do volume inicial S_0 (conforme objetivo do estudo), e a partir deste, determina-se Q_0 ;
- 2. Calcula-se o termo direito da equação 2, uma vez que o hidrograma de entrada foi determinado pelo método do hidrograma unitário do SCS;
- 3. com este valor $(Q_{t+1} + 2.S_{t+1}/Dt)$ é possível obter Q_{t+1} através de Q=h (Q+2S/Dt) e S_{t+1} através de $S_{t+1} = f-1$ (Q_{t+1}) ;
- 4. repete-se 2 e 3 para todos intervalos de cálculo.

Para determinar a curva que relaciona vazão e armazenamento usa-se diretamente da relação hxQ para o tipo de vertedouro estudado ou faz-se uso de duas funções:

$$Z = a.Sb$$
 e $Q = C.L.(Z - Z_w)3/2$

onde Z= cota (m); S= armazenamento (m3); Q= vazão (m3/s); C= coeficiente de descarga; L= largura do sangradouro (m); $Z_w=$ cota da soleira do sangradouro e a, b são coeficientes obtidos por regressão.

O valor de C para o tipo de sangradouro projetado para o açude Riacho da Serra (corte em rocha) foi estimado com base no seguinte procedimento hidráulico:

 Determinou-se o comprimento do sangradouro desde o início até o ponto onde se dá o regime crítico;

- Adotou-se um valor para a vazão e determinou-se a altura crítica hc;
- Traçou-se a curva de remanso desde o ponto de regime crítico até o ponto, no lago, de velocidade nula, determinando um valor H1 medido em relação às cotas da barragem;
- Repetiu-se os cálculos para diversos valores de vazão Q, determinando-se assim a curva-chave do vertedouro.

6.3. RESULTADOS

A adoção de cheias de projeto da magnitude da cheia máxima provável não se justifica para o reservatório em estudo, por suas localizações, capacidades e finalidades. Assim, dentro desta perspectiva, optou-se por utilizar a cheia associada ao hietograma de 1.000 anos e verificar a barragem para o hietograma de 10.000 anos.

A largura do sangradouro da barragem Riacho da Serra foi definida não em função de condições hidráulicas, mas em função da utilização da rocha escavada no sangradouro no corpo da barragem. Dessa forma, a largura foi definida como aquela que proporcionaria um escavação de tal monta que todo o material escavado fosse aproveitado na barragem.

Foram simuladas condições de operação para as seguintes cotas de sangria:86m, 88m, 89, e 90m.

Essas simulações permitiram a estimativa de custos da barragem para cada cota de sangria, dados utilizados para a confecção da curva custo do m3 regularizado anual x volume armazenado apresentada no Capítulo 7.

A largura do sangradouro escolhida foi de 120 m.

Para o tempo de concentração da bacia adotou-se uma chuva de duração igual a 12 horas.

Os hidrogramas afluentes e efluentes para os tempos de retorno 1.000 e 10.000 anos são mostrados a seguir.

Os picos de vazão efluente e lâminas de sangria são mostrados no Quadro 6.3.1 a seguir, para os períodos de retorno de 1.000 e 10.000 anos.

Quadro 6.3.1 - Vazões e lâminas de sangria

COTA DE	TR = 1.0	00 ANOS	TR = 10.000 ANOS			
SANGRIA (m)	$Q(m^3/s)$	h(m)	$Q(m^3/s)$	h(m)		
86	526	2,15	806	2,75		
88	459	1,99	721	2,60		
89	428	1,91	676	2,48		
90	398	1,84	639	2,40		

Para a cota escolhida no capítulo 7, pode-se observar os hidrogramas de entrada e saída ao açude no Anexo A ao final deste volume.

7. DIMENSIONAMENTO DO RESERVATÓRIO

7. DIMENSIONAMENTO DO RESERVATÓRIO

7.1. DISPONIBILIDADE HÍDRICA

A importância do estudo da capacidade de regularização de um reservatório está ligada ao conhecimento das mudanças temporais e espaciais dos deflúvios naturais, visando o atendimento das demandas da sociedade. Busca-se aqui avaliar o tamanho que deve ser a obra de maneira que ganhos em regularização de águas justifique os investimentos a serem realizados.

Hidrologicamente, os objetivos central deste capítulo é a análise incremental do ganho em volume regularizado em relação ao aumento da capacidade para a Barragem Riacho da Serra

7.1.1. METODOLOGIA

Na determinação das curvas de regulação do reservatório foi utilizado o modelo de simulação de reservatórios HEC-3. Esse modelo simula a operação mensal do açude, fazendo uso para isso da equação da continuidade dos volumes (Equação do Balanço Hídrico).

7.1.1.1. Solução Direta da Equação do Balanço Hídrico

A equação do balanço hídrico de um reservatório pode ser dada por:

$$Z_{t+1} = Z_t + I_t - \frac{A_{t+1} + A_t}{2} E - M - S_t$$

com

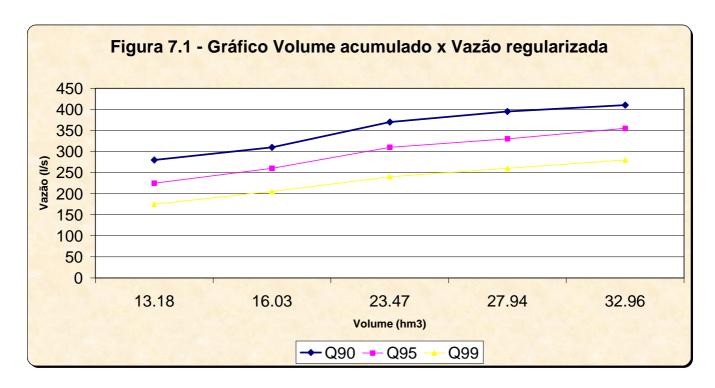
$$S_t = max(B - K;0)$$

$$B = Z_t + I_t - \frac{A_{t+1} + A_t}{2}E - M$$

onde:

 Z_t = volume armazenado no início do ano t;

 I_t = volume afluente ao reservatório durante o ano t;


At = área do espelho d'água no início do ano t;

E = lâmina evaporada durante o ano t, suposta constante ao longo dos anos;

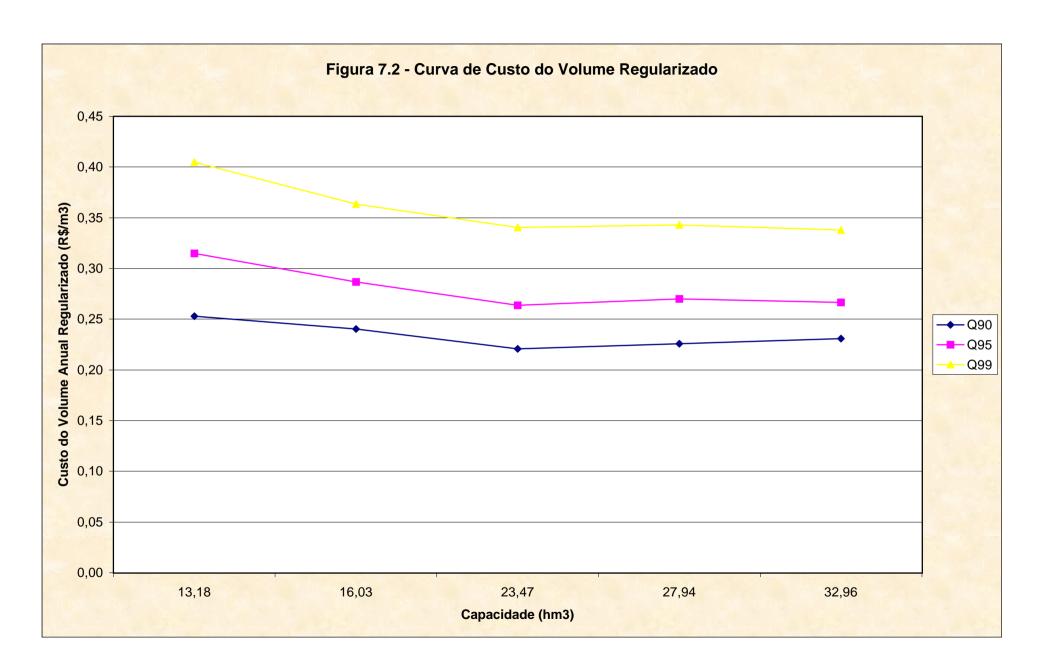
K = capacidade do reservatório;

 S_t = volume perdido por sangria durante o ano t.

Foi utilizada a série já apresentada no Capítulo 5 para obtenção das vazões regularizadas com 90%,95% e 99% de garantia a partir do uso do modelo HEC-3. Os resultados destas simulações estão sumarizados no Quadro 7.1 e na Figura 7.1 a seguir.

Quadro 7.1 - Estudo incremental de capacidades do Açude (HEC-3)

V=13,18 hm3		V=16,03 hm3			V=23,47 hm3			V:	=27,94 hn	n3	V=32,96 hm3			
Q(l/s)	FALHAS	GAR(%)	Q(l/s)	FALHAS	GAR(%)	Q(l/s)	FALHAS	GAR(%)	Q(l/s)	FALHAS	GAR(%)	Q(l/s)	FALHAS	GAR(%)
280	100	90%	310	101	90%	370	101	90%	395	99	90%	410	101	90%
225	50	95%	260	53	95%	310	50	95%	330	47	95%	355	55	95%
175	7	99%	205	11	99%	240	6	99%	260	9	99%	280	12	99%



7.2. ESTUDO DA CAPACIDADE ECONÔMICA DO RESERVATÓRIO

A determinação do tamanho do reservatório foi realizada tendo como base o custo mínimo do volume regularizado. Assim, foi realizado o dimensionamento hidrológico - econômico da capacidade do açude.

Para as diversas cotas, determinou-se o seu respectivo custo, tendo-se assim associado a cada cota um custo correspondente da obra. A partir deste pares (cota, custo), foi determinada a curva de custo do m3 regularizado associado a cada garantia de atendimento.

Como pode ser observado no gráfico da Figura 7.2, o menor custo do m³ regularizado se dá para o volume máximo armazenado de 23,47 hm³, ou cota de sangria 88m.

8. ESTUDOS ADICIONAIS

8. ESTUDOS ADICIONAIS

8.1. Introdução

Este capítulo apresenta estudos adicionais visando fornecer características do reservatório durante a fase de operação, sendo estudado:

- a probabilidade de enchimento do reservatório na fase transiente;
- a probabilidade de esvaziamento do reservatório na fase de equilíbrio;
- a probabilidade de extravazamento do reservatório na fase de equilíbrio;
- a curva de esvaziamento do reservatório.

8.2. ESTUDO DA DISPONIBILIDADE HÍDRICA

O estudo da disponibilidade hídrica do reservatório compreende o estudo das probabilidades de enchimento, esvaziamento e extravazamento do reservatório. Este estudo pode ser realizado diante duas óticas: na fase transiente, quando essa probabilidade depende do volume inicial do reservatório; na fase de equilíbrio, quando o processo estocástico de armazenamento torna-se ergódigo. A metodologia aqui empregada tem suporte teórico na teoria estocástica de reservatórios ou Teoria de Moran7, apresentando como novidade a inclusão da matriz de evaporação para considerar as perdas por este processo - método de CAMPOS (1990).

As etapas de cálculo destas probabilidades para um reservatório de uma determinada capacidade e retirada são descritas a seguir:

1. dividir o volume total do reservatório K, por 20, definindo 21 estados que podem ser atingidos pela reserva. A representação gráfica do espaço de definição destes estados de reserva é apresentada na figura 8.1 e no Quadro 8.1.

⁷ MORAN, P.A.P. 1959. THE THEORY OF STORAGE. LONDON: METHUEN & CO LTD, 111 p.

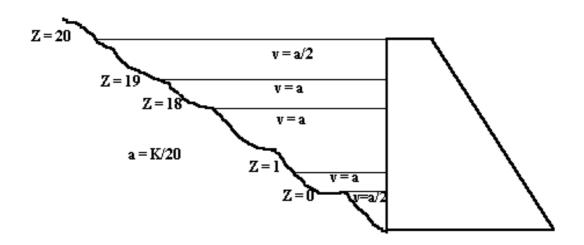


Figura 8.1 - Espaço de definição dos estados de reserva

Quadro 8.1 - Limite, em volume, dos estados de reserva

NÚMERO DO ESTADO (z)	LIMITES DE ARMAZENAMENTO	ARMAZENAMENTO NO ESTADO (2)
0	$0 < z \le (1/2).a$	z = seco
1	$(1/2).a < z \le (3/2).a$	z = a
2	$(3/2).a < z \le (5/2).a$	z = 2.a
•	•••	•
n-1	$(n-3/2).a < z \le (n-1/2).a$	z = (n-1).a
N	$(n-1/2).a < z \le K$	z = cheio

- 2. Calcular a matriz de transição de probabilidades devido aos deflúvios anuais [W]. Supõe-se que os deflúvios seguem uma distribuição Gamma de dois parâmetros na estação úmida e com uma massa de probabilidades para aa estação seca.
- 3. Calcular a matriz de transição de probabilidades devido à metade da evaporação (E), supondo que a relação cota x área x volume é determinada por:

$$Z(h) = \alpha . h^3$$
 e $A(h) = 3.\alpha . h^2$

onde h - altura do espelho d'água; α - fator de forma (obtido por regressão entre z e h3); A - área do espelho d'água a altura h e V - volume acumulado a altura h.

- Calcular a matriz de transição de probabilidades para uma retirada anual de M unidades de água [M];
- 5. Calcular a matriz de transição de probabilidade anual através do produto das matrizes parciais

[Q] = [E].[M].[E].[W]

6. Formar o sistema de equações para determinar a probabilidade de interesse:

$$q_{00}.B_0 + q_{01}.B_1 + ... + q_{0N}.B_N = B_0$$

$$q_{10}$$
. $B_0 + q_{11}$. $B_1 + ... + q_{1N}$. $B_N = B_1$

$$q_{N0}$$
. $B_0 + q_{N1}$. $B_1 + ... + q_{NN}$. $B_N = B_N$

onde

q_{ij} = probabilidade da reserva passar do estado i ao j em um ano e

B_i = probabilidade da reserva atingir o estado i em condições de equilíbrio.

Como o sistema acima não é homogêneo, uma de suas equações deve ser substituida por

$$BO + B1 + ... + BN = 1.$$

7. Resolver o sistema acima e calcular B0 e BN, respectivamente, a probabilidade do reservatório estar seco e cheio em condições de equilíbrio.

Através desta metodologia foram determinadas as curvas de probabilidade de enchimento do reservatório (inicialemente seco) na fase transiente considerando as retiradas de 0, Qr90 /4, Qr90 /2, 3.Qr90 /4 e Qr90 (Quadro 8.2). Na figura 8.2 apresenta-se as curvas de garantia para as retiradas de 0, Qr90 /4, Qr90 /2, 3.Qr90 /4 e Qr90.

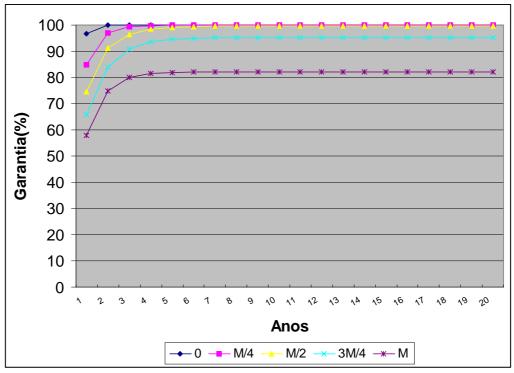


Figura 8.2 - Análise Probabilística da Garantia do Reservatório - fase transiente (M=Qr90)

Quadro 8.2 - Análise Probabilística do Enchimento do Reservatório na Fase Transiente. Reservatório inicialmente seco.

	RETIRADA ($M = Q90$)						
ANO	0	M/4	M/2	3M/4	M		
	U	IVI / 4	IV1 / &	3W1/4	171		
1	96.53	84.91	74.66	65.66	57.77		
2	99.85	96.89	91.18	84.01	74.82		
3	99.99	99.26	96.46	90.87	79.95		
4	100	99.8	98.43	93.52	81.49		
5	100	99.95	99.21	94.55	81.95		
6	100	99.98	99.53	94.94	82.09		
7	100	100	99.66	95.1	82.13		
8	100	100	99.72	95.16	82.15		
9	100	100	99.74	95.18	82.15		
10	100	100	99.75	95.19	82.15		

Continuação do Quadro 8.2

ANO	RETIRADA ($M = Q90$)							
ANO	0	M/4	M/2	3M/4	M			
11	100	100	99.75	95.19	82.15			
12	100	100	99.75	95.2	82.15			
13	100	100	99.75	95.2	82.15			
14	100	100	99.76	95.2	82.15			
15	100	100	99.76	95.2	82.15			
16	100	100	99.76	95.2	82.15			
17	100	100	99.76	95.2	82.15			
18	100	100	99.76	95.2	82.15			
19	100	100	99.76	95.2	82.15			
20	100	100	99.76	95.2	82.15			

M = Retirada anual (hm3)

Também foi realizada a análise probabilística de esvaziamento e de enchimento na fase de equilíbrio. A figura 8.3 apresenta as duas curvas probabilísticas (esvaziamento e enchimento), enquanto que o Quadro 8.3 os seus valores correspondentes.

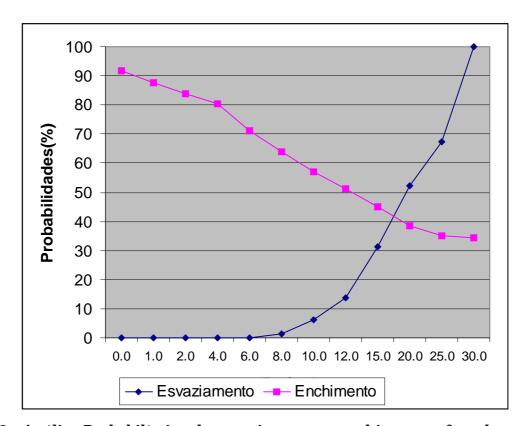
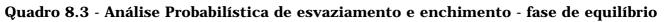



Figura 8.3 - Análise Probabilística de esvaziamento e enchimento - fase de equilibrio

RETIRADA(hm³)	ESVAZIAMENTO (%)	ENCHIMENTO (%)
0.0	0	91.7
1.0	0	87.8
2.0	0	84
4.0	0	80.3
6.0	0.1	71.1
8.0	1.5	63.8
10.0	6.1	57.1
12.0	13.7	51.3
15.0	31.4	44.9
20.0	52.1	38.6
25.0	67.2	35.2
30.0	100	34.5

ANEXO A

HIDROGRAMAS PARA 1000 ANOS

HMS * Summary of Results for SANGRA

Project : RSERRA Run Name : Run 10

Start of Run : 01Jan00 0100 Basin Model : RS1000.88

End of Run : 03Jan00 0250 Met. Model : rser1000.DAT

Execution Time : 03Nov01 1604 Control Specs : rser1000.DAT

Date	Time	Reservoir	Reservoir	Inflow	Outflow	
		Storage	Elevation	(cms)	(cms)	
		(K cu m)	(m)			
01 Jan 00	0100	23470	88.000	0.00	0.00	
01 Jan 00	0110	23470	88.000	0.00	0.00	
01 Jan 00	0120	23470	88.000	0.00	0.00	
01 Jan 00	0130	23470	88.000	0.00	0.00	
01 Jan 00	0140	23470	88.000	0.00	0.00	
01 Jan 00	0150	23470	88.000	0.00	0.00	
01 Jan 00	0200	23470	88.000	0.00	0.00	
01 Jan 00	0210	23470	88.000	0.00	0.00	
01 Jan 00	0220	23470	88.000	0.00	0.00	
01 Jan 00	0230	23470	88.000	0.00	0.00	
01 Jan 00	0240	23470	88.000	0.00	0.00	
01 Jan 00	0250	23470	88.000	0.00	0.00	
01 Jan 00	0300	23470	88.000	0.00	0.00	
01 Jan 00	0310	23470	88.000	0.00	0.00	
01 Jan 00	0320	23470	88.000	0.00	0.00	
01 Jan 00	0330	23470	88.000	0.00	0.00	
01 Jan 00	0340	23470	88.000	0.00	0.00	
01 Jan 00	0350	23470	88.000	0.00	0.00	
01 Jan 00	0400	23470	88.000	0,00	0.00	
01 Jan 00	0410	23470	88.000	0.00	0.00	
01 Jan 00	0420	23470	88.000	0.00	0.00	
01 Jan 00	0430	23470	88.000	0.00	0.00	
01 Jan 00	0440	23470	88.000	0.00	0.00	
01 Jan 00	0450	23470	88,000	0.00	0.00	
01 Jan 00	0500	23470	88.000	0.00	0.00	
01 Jan 00	0510	23470	88.000	0.00	0.00	
01 Jan 00	0520	23470	88.000	0.00	0.00	
01 Jan 00	0530	23470	88.000	0.00	0.00	
01 Jan 00	0540	23470	88.000	0.00	0.00	
01 Jan 00	0550	23470	88.000	0.00	0.00	
01 Jan 00	0600	23470	88.000	0.00	0.00	
01 Jan 00	0610	23470	88.000	0.01	0.00	
01 Jan 00	0620	23470	88.000	0.02	0.00	
01 Jan 00	0630	23470	88.000	0.04	0.00	
01 Jan 00	0640	23470	88.000	0.07	0.00	
01 Jan 00	0650	23470	88.000	0.11	0.00	
01 Jan 00	0700	23470	88,000	0.16	0.00	
01 Jan 00	0710	23470	88.000	0.23	0.01	
01 Jan 00	0720	23470	88.000	0.32	0.01	
01 Jan 00	0730	23471	88.000	0.44	0.02	
01 Jan 00	0740	23471	88.000	0.59	0.02	
01 Jan 00	0750	23471	88.000	0.77	0.03	
01 Jan 00	0800	23472	88.000	1.00	0.05	
01 Jan 00	0810	23473	88.001	1.28	0.06	
01 Jan 00	0820	23473	88.001	1.61	0.08	

Date	Time	Reservoir	Reservoir	Inflow	Outflow
		Storage (K cu m)	Elevation (m)	(cms)	(cms)
	0.000		88.001	2.00	0.11
01 Jan 00	0830	23474	88.001	2.47	0.14
01 Jan 00	0840	23476		3.01	0.18
01 Jan 00	0850	23477	88.002	3.63	0.22
01 Jan 00	0900	23479	88.002	4.34	0.28
01 Jan 00	0910	23481	88.003	5.15	0.34
01 Jan 00	0920	-23484	88.003		0.42
01 Jan 00	0930	23487	88.004	6.06 7.08	0.51
01 Jan 00	0940	23491	88.005	8.22	0.62
01 Jan 00	0950	23495	88.006	9.48	0.74
01 Jan 00	1000	23500	88.007		0.87
01 Jan 00	1010	23506	88.008	10.87	1.03
01 Jan 00	1020	23512	88.010	12.40	
01 Jan 00	1030	23519	88.012	14.07	1.21
01 Jan 00	1040	23527	88.013	15.89	1.41
01 Jan 00	1050	23537	88.016	17.88	1.64
01 Jan 00	1100	23547	88.018	20.03	1.89
01 Jan 00	1110	23558	88.021	22.37	2.18
01 Jan 00	1120	23571	88.024	24.89	2.49
01 Jan 00	1130	23585	88.027	27.62	2.84
01 Jan 00	1140	23601	88.031	30.58	3.22
01 Jan 00	1150	23618	88.035	33.79	3.65
01 Jan 00	1200	23637	88.039	37.28	4.12
01 Jan 00	1210	23658	88.044	41.11	4.63
01 Jan 00	1220	23681	88.049	45.32	5.20
01 Jan 00	1230	23706	88.055	49.98	5.82
01 Jan 00	1240	23734	88.062	55.32	6.51
01 Jan 00	1250	23765	88.069	61.50	7.27
01 Jan 00	1300	23800	88.077	68.86	8.12
01 Jan 00	1310	23839	88.086	78.79	9.08
01 Jan 00	1320	23884	88.097	90.24	10.18
01 Jan 00	1330	23935	88.109	103.75	11.46
01 Jan 00	1340	23995	88.123	120.14	12.93
01 Jan 00	1350	24065	88.139	138.13	14.63
01 Jan 00	1400	24144	88.158	158.05	16.59
01 Jan 00	1410	24235	88.179	179.91	18.82
01 Jan 00	1420	24338	88.203	203.30	21.36
01 Jan 00	1430	24454	88.230	229.00	24.21
01 Jan 00	1440	24584	88.260	256.76	27.42
01 Jan 00	1450	24729	88.294	286.18	30.99
01 Jan 00	1500	24891	88.332	318.36	34.97
01 Jan 00	1510	25070	88.374	352.24	39.37
01 Jan 00	1520	25267	88.420	387.37	44.22
01 Jan 00	1530	25482	88.470	424.25	49.52
		25716	88.525	461.35	55.28
01 Jan 00	1540	25969	88.584	497.85	61.50
01 Jan 00	1550	26239	88.647	532.30	68.15
01 Jan 00	1600	26525	88.714	565.33	75.20
01 Jan 00	1610	26826	88.785	595.83	82.61
01 Jan 00	1620		88.858	623.03	90.33
01 Jan 00	1630	27140	88.934	648.00	98.32
01 Jan 00	1640	27465			116.37
01 Jan 00	1650	27796	89.004	669.50	137.00
01 Jan 00	1700	28127	89.072	687.74	
01 Jan 00	1710	28456	89.140	703.45	157.50
01 Jan 00	1720	28781	89.207	715.34	177.75
01 Jan 00	1730	29100	89.272 Page: 2	724.49	197.65

Date	Time	Reservoir	Reservoir	Inflow	Outflow	
		Storage (K cu m)	Elevation (m)	(cms)	(cms)	
01 Jan 00	1740	29412	89.334	731.45	218.12	
01 Jan 00	1750	29716	89.394	735.64	238.15	
01 Jan 00	1800	30009	89,453	737.74	257.52	
01 Jan 00	1810	30291	89.509	737.40	276.17	
01 Jan 00	1820	30561	89.562	733.26	294.02	
01 Jan 00	1830	30818	89.612	727.31	312.23	
01 Jan 00	1840	31059	89.658	719.56	330.04	
01 Jan 00	1850	31285	89.701	710.22	346.72	
01 Jan 00	1900	31495	89.742	699.65	362.23	
01 Jan 00	1910	31690	89.779	687.67	376.59	
01 Jan 00	1920	31869	89.813	674.34	389.78	
01 Jan 00	1930	32031	89.845	659.85	401.81	
01 Jan 00	1940	32178	89.872	643.69	412.76	
01 Jan 00	1950	32308	89.896	626.21	422.49	
01 Jan 00	2000	32423	89.918	607.70	431.01	
01 Jan 00	2010	32520	89.936	587.81	438.31	
01 Jan 00	2020	32602	89.951	567.38	444.41	
01 Jan 00	2030	32668	89.963	546.89	449.35	
01 Jan 00	2040	32720	89.973	527.43	453.19	
01 Jan 00	2050	32758	89.980	508.43	456.03	
01 Jan 00	2100	32783	89.985	490.36	457.93	
01 Jan 00	2110	32797	89.987	473.81	458.99	
01 Jan 00	2120	32801	89.988	457.86	459.29	
01 Jan 00	2130	32796	89.987	442.64	458.89	
01 Jan 00	2140	32782	89.985	428.10	457.86	
01 Jan 00	2150	32761	89.981	414.02	456.25	
01 Jan 00	2200	32732	89.975	400.66	454.11	
01 Jan 00	2210	32697	89.969	387.89	451.49	
01 Jan 00	2220	32656	89.961	375.63	448.43	
01 Jan 00	2230	32610	89.952	364.22	444.99	
01 Jan 00	2240	32559	89.943	353.28	441.22	
01 Jan 00	2250	32505	89.933	342.66	437.13	
01 Jan 00	2300	32446	89.922	332.30	432.77	
01 Jan 00	2310	32384	89.910	322.18	428.15	
01 Jan 00	2320	32319	89.898	312.38	423.29	
01 Jan 00	2330	32251	89.886	303.05	418.23	
01 Jan 00	2340	32181	89.872	293.96	412.99	
01 Jan 00	2350	32109	89.859	285.11	407.58	
01 Jan 00	2400	32034	89.845	276.49	402.03	
02 Jan 00	0010	31958	89.831	268.17	396.39	
02 Jan 00	0020	31880	89.816	260.39	390.66	
02 Jan 00	0030	31802	89.801	253.07	384.86	
02 Jan 00	0040	31722	89.785	246.01	379.00	
02 Jan 00	0050	31642	89.770	239.18	373.09	
02 Jan 00	0100	31562	89.755	232.57	367.15	
02 Jan 00	0110	31481	89.739	226.15	361.18	
02 Jan 00	0120	31400	89.724	220.12	355.20	
02 Jan 00	0130	31319	89.708	214.26	349.22	
02 Jan 00	0140	31238	89.692	208.53	343.25	
02 Jan 00	0150	31157	89.677	202.91	337.29	
02 Jan 00	0200	31077	89.662	197.39	331.35	
02 Jan 00	0210	30997	89.646	192.05	325.43	
02 Jan 00	0220	30917	89.631	186.91	319.54	
02 Jan 00	0230	30837	89.616	181.84	313.68	
02 Jan 00	0240	30759	89.600 Page: 3	176.83	307.86	

Date Time		Reservoir	Reservoir	Inflow	Outflow
		Storage (K cu m)	Elevation (m)	(cms)	(cms)
	-	(1. 00 m)	,		
2 Jan 00	0250	30680	89.585	171.86	302.08
2 Jan 00	0300	30602	89.570	166.92	296.71
2 Jan 00	0310	30524	89.555	162.10	291.57
2 Jan 00	0320	30447	89.539	157.33	286.45
02 Jan 00	0330	30369	89.524	152.53	281.34
02 Jan 00	0340	.30292	89.509	147.69	276.24
02 Jan 00	0350	30215	89.493	142.80	271.15
02 Jan 00	0400	30138	89.478	137.91	266.06
02 Jan 00	0410	30061	89.463	133.06	260.99
02 Jan 00	0420	29985	89.448	128.21	255.92
02 Jan 00	0430	29908	89.433	123.37	250.87
02 Jan 00	0440	29832	89.417	118.53	245.82
02 Jan 00	0450	29755	89.402	113.72	240.78
02 Jan 00	0500	29679	89.387	108.99	235.75
02 Jan 00	0510	29603	89.372	104.34	230.73
02 Jan 00	0520	29528	89.357	99.77	225.73
02 Jan 00	0530	29452	89.342	95.27	220.75
02 Jan 00	0540	29377	89.327	90.85	215.79
02 Jan 00	0550	29302	89.313	86.52	210.85
02 Jan 00	0600	29228	89.298	82.32	205.94
02 Jan 00	0610	29154	89.283	78.22	201.05
02 Jan 00 02 Jan 00	0620	29080	89.268	74.25	196.41
02 Jan 00	0630	29007	89.253	70.41	191.86
			89.238	66.70	187.34
02 Jan 00	0640	28935			182.84
02 Jan 00	0650	28863	89.223	63.13	
02 Jan 00	0700	28791	89.209	59.72	178.39
02 Jan 00	0710	28720	89.194	56.45	173.97
02 Jan 00	0720	28650	89.180	53.31	169.60
02 Jan 00	0730	28581	89.165	50.30	165.28
02 Jan 00	0740	28512	89.151	47.43	161.01
02 Jan 00	0750	28444	89.137	44.73	156.79
02 Jan 00	0800	28378	89.124	42.18	152.63
02 Jan 00	0810	28312	89.110	39.78	148.53
02 Jan 00	0820	28247	89.097	37.53	144.50
02 Jan 00	0830	28184	89.084	35.42	140.54
02 Jan 00	0840	28121	89.071	33.43	136.64
02 Jan 00	0850	28060	89.058	31.56	132.82
02 Jan 00	0900	28000	89.046	29.80	129.07
02 Jan 00	0910	27941	89.034	28.12	125.40
02 Jan 00	0920	27883	89.022	26.53	121.80
02 Jan 00	0930	27826	89.010	25.02	118.28
02 Jan 00	0940	27771	88.999	23.58	114.83
02 Jan 00	0950	27717	88.988	22.22	111.45
02 Jan 00	1000	27664	88.977	20.92	108.16
02 Jan 00	1010	27612	88.966	19.70	104.93
02 Jan 00	1020	27562	88.956	18.53	101.78
02 Jan 00 02 Jan 00	1030	27512	88.945	17.43	99.48
02 Jan 00 02 Jan 00	1040	27463	88.934	16.36	98.27
	1050	27414	88.922	15.35	97.06
02 Jan 00			88.911	14.38	95.86
02 Jan 00	1100	27365			94.66
02 Jan 00	1110	27316	88.899	13.46	
02 Jan 00	1120	27267	88.888	12.57	93.46
02 Jan 00	1130	27219	88.877	11.73	92.27
02 Jan 00	1140	27171	88.865	10.93	91.08
02 Jan 00	1150	27123	88.854 Page: 4	10.17	89.90


Date	Time	Reservoir	Reservoir	Inflow	Outflow	
		Storage (K cu m)	Elevation (m)	(cms)	(cms)	
00 7 00	1200			0.45	00 72	
02 Jan 00	1200	27075	88.843	9.45	88.73	
02 Jan 00 02 Jan 00	1210	27028	88.832	8.78	87.56 86.40	
02 Jan 00 02 Jan 00	1220 1230	26981 26934	88.821 88.810	8.15 7.60	85.25	
02 Jan 00 02 Jan 00	1240	26887	88.799		84.11	
02 Jan 00 02 Jan 00	1250	-26841	88.788	7.10 6.65	82.98	
02 Jan 00 02 Jan 00	1300	26796	88.778	6.23	81.85	
02 Jan 00	1310	26751	88.767	5.84	80.74	
02 Jan 00	1320	26706	88.757	5.48	79.64	
02 Jan 00	1330	26662	88.746	5.14	78.55	
02 Jan 00	1340	26618	88.736	4.82	77.47	
02 Jan 00	1350	26574	88.726	4.52	76.41	
02 Jan 00	1400	26532	88.716	4.24	75.35	
02 Jan 00	1410	26489	88.706	3.98	74.31	
		26447	88.696	3.73	73.27	
02 Jan 00 02 Jan 00	1420 1430	26406	88.686	3.73	72.25	
					71.24	
02 Jan 00	1440	26365	88.677 88.667	3.28 3.08	70.25	
02 Jan 00 02 Jan 00	1450	26324	88.667	2.89	69.26	
	1500	26284	88.658			
02 Jan 00	1510	26244	88.649	2.71	68.29	
02 Jan 00	1520	26205	88.640	2.54	67.32	
02 Jan 00	1530	26167	88.631	2.38	66.37	
02 Jan 00	1540	26129	88.622	2.23	65.43	
02 Jan 00	1550	26091	88.613	2.09	64.51	
02 Jan 00	1600	26054	88.604	1.96	63.59	
02 Jan 00	1610	26017	88.596	1.84	62.69	
02 Jan 00	1620	25981	88.587	1.72	61.79	
02 Jan 00	1630	25945	88.579	1.61	60.91	
02 Jan 00	1640	25909	88.570	1.50	60.04	
02 Jan 00	1650	25875	88.562	1.41	59.18	
02 Jan 00	1700	25840	88.554	1.31	58.33	
02 Jan 00	1710	25806	88.546	1.23	57.50	
02 Jan 00	1720	25773	88.538	1.15	56.67	
02 Jan 00	1730	25740	88.531	1.07	55.86	
02 Jan 00	1740	25707	88.523	1.00	55.05	
02 Jan 00	1750	25675	88.515	0.93	54.26	
02 Jan 00	1800	25643	88.508	0.87	53.48	
02 Jan 00	1810	25612	88.501	0.81	52.71	
02 Jan 00	1820	25581	88,493	0.75	51.95	
02 Jan 00	1830	25550	88.486	0.70	51.20	
02 Jan 00	1840	25520	88.479	0.65	50.46	
02 Jan 00	1850	25490	88.472	0.61	49.72	
02 Jan 00	1900	25461	88.466	0.56	49.00	
02 Jan 00	1910	25432	88.459	0.52	48.29	
02 Jan 00	1920	25404	88.452	0.48	47.59	
02 Jan 00	1930	25376	88.446	0.45	46.90	
02 Jan 00	1940	25348	88.439	0.41	46.22	
02 Jan 00	1950	25321	88.433	0.38	45.55	
02 Jan 00	2000	25294	88.426	0.35	44.89	
02 Jan 00	2010	25267	88.420	0.32	44.23	
02 Jan 00	2020	25241	88.414	0.30	43.59	
02 Jan 00	2030	25215	88.408	0.27	42.96	
02 Jan 00	2040	25190	88.402	0.24	42.33	
02 Jan 00	2050	25165	88.396	0.22	41.71	
02 Jan 00	2100	25140	88.390	0.20	41.10	
,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	327		Page: 5			

Date	Time	Reservoir	Reservoir	Inflow	Outflow	
		Storage	Elevation	(cms)	(cms)	
		(K cu m)	(m)			
02 Jan 00	2110	25116	88.385	0.18	40.50	
02 Jan 00	2120	25092	88.379	0.16	39.91	
02 Jan 00	2130	25068	88.374	0.14	39.33	
02 Jan 00	2140	25045	88.368	0.12	38.76	
02 Jan 00	2150	25022	88.363	0.11	38.19	
02 Jan 00	2200	-24999	88.357	0.09	37.63	
02 Jan 00	2210	24977	88.352	0.08	37.08	
02 Jan 00	2220	24955	88.347	0.07	36.54	
02 Jan 00	2230	24933	88.342	0.06	36.00	
02 Jan 00	2240	24911	88.337	0.05	35.48	
02 Jan 00	2250	24890	88.332	0.04	34.96	
02 Jan 00	2300	24869	88.327	0.03	34.44	
02 Jan 00	2310	24849	88.322	0.02	33.94	
2 Jan 00	2320	24829	88.318	0.02	33.44	
02 Jan 00	2330	24809	88.313	0.01	32.95	
02 Jan 00	2340	24789	88.308	0.01	32.47	
)2 Jan 00	2350	24770	88.304	0.00	31.99	
2 Jan 00	2400	24751	88.299	0.00	31.53	
)3 Jan 00	0010	24732	88.295	0.00	31.06	
3 Jan 00	0020	24714	88.291	0.00	30.61	
03 Jan 00	0030	24695	88.287	0.00	30.16	
03 Jan 00	0040	24677	88,282	0.00	29.72	
03 Jan 00	0050	24660	88.278	0.00	29.28	
03 Jan 00	0100	24642	88.274	0.00	28.85	
03 Jan 00	0110	24625	88.270	0.00	28.43	
03 Jan 00	0120	24608	88.266	0.00	28.01	
03 Jan 00	0130	24591	88.262	0.00	27.60	
03 Jan 00	0140	24575	88.258	0.00	27.20	
03 Jan 00	0150	24559	88.255	0.00	26.80	
03 Jan 00	0200	24543	88.251	0.00	26.41	
03 Jan 00	0210	24527	88.247	0.00	26.02	
03 Jan 00	0220	24512	88.244	0.00	25.64	
03 Jan 00	0230	24496	88.240	0.00	25.26	
03 Jan 00	0240	24481	88.236	0.00	24.89	
03 Jan 00	0250	24466	88.233	0.00	24.53	

HIDROGRAMAS PARA 10000 ANOS

HMS * Summary of Results for SANGRA

Project : RSERRA Run Name : Run 6

 Start of Run
 : 01Jan00 0100
 Basin Model
 : RS1000.88

 End of Run
 : 03Jan00 0250
 Met. Model
 : rse10000.DAT

 Execution Time
 : 03Nov01 1603
 Control Specs
 : rser1000.DAT

Date	Time	Reservoir	Reservoir	Inflow	Outflow	
)		Storage	Elevation	(cms)	(cms)	
		(K cu m)	(m)			
01 Jan 00	0100	23470	88.000	0.00	0.00	
01 Jan 00	0110	23470	88.000	0.00	0.00	
01 Jan 00	0120	23470	88.000	0.00	0.00	
01 Jan 00	0130	23470	88.000	0.00	0.00	
01 Jan 00	0140	23470	88.000	0.00	0.00	
01 Jan 00	0150	23470	88.000	0.00	0.00	
01 Jan 00	0200	23470	88.000	0.00	0.00	
01 Jan 00	0210	23470	88.000	0.00	0.00	
01 Jan 00	0220	23470	88.000	0.00	0.00	
01 Jan 00	0230	23470	88.000	0.00	0.00	
01 Jan 00	0240	23470	88.000	0.00	0.00	
01 Jan 00	0250	23470	88.000	0.00	0.00	
01 Jan 00	0300	23470	88.000	0.00	0.00	
01 Jan 00	0310	23470	88.000	0.00	0.00	
01 Jan 00	0320	23470	88.000	0.00	0.00	
01 Jan 00	0330	23470	88.000	0.00	0.00	
01 Jan 00	0340	23470	88.000	0.00	0.00	
01 Jan 00	0350	23470	88.000	0,00	0.00	
01 Jan 00	0400	23470	88.000	0.00	0.00	
01 Jan 00	0410	23470	88.000	0.00	0.00	
01 Jan 00	0420	23470	88.000	0.00	0.00	
01 Jan 00	0430	23470	88.000	0.00	0.00	
01 Jan 00	0440	23470	88.000	0.00	0.00	
01 Jan 00	0450	23470	88.000	0.00	0.00	
01 Jan 00	0500	23470	88.000	0.01	0.00	
01 Jan 00	0510	23470	88.000	0.02	0.00	
01 Jan 00	0520	23470	88.000	0.03	0.00	
01 Jan 00	0530	23470	88.000	0.06	0.00	
01 Jan 00	0540	23470	88.000	0.10	0.00	
01 Jan 00	0550	23470	88.000	0.15	0.00	
01 Jan 00	0600	23470	88.000	0.22	0.01	
01 Jan 00	0610	23470	88.000	0.32	0.01	
01 Jan 00	0620	23471	88.000	0.45	0.02	
01 Jan 00	0630	23471	88.000	0.61	0.02	
01 Jan 00	0640	23471	88.000	0.81	0.03	
01 Jan 00	0650	23472	88.000	1.06	0.05	
01 Jan 00	0700	23473	88.001	1.36	0.06	
01 Jan 00	0710	23473	88.001	1.72	0.09	
01 Jan 00	0720	23475	88.001	2.16	0.11	
01 Jan 00	0730	23476	88.001	2.68	0.15	
01 Jan 00	0740	23478	88.002	3.29	0.19	
01 Jan 00	0750	23480	88.002	4.00	0.24	
01 Jan 00	0800	23482	88.003	4.82	0.30	
01 Jan 00	0810	23485	88.004	5.76	0.37	
01 Jan 00	0820	23489	88.004	6.82	0.46	

Date	Time	Reservoir	Reservoir	Inflow	Outflow
		Storage (K cu m)	Elevation (m)	(cms)	(cms)
01 Jan 00	0830	23493	88.005	8.02	0.56
01 Jan 00	0840	23498	88.006	9.36	0.68
01 Jan 00	0850	23503	88.008	10.85	0.82
1 Jan 00	0900	23510	88.009	12.49	0.98
01 Jan 00	0910	23517	88.011	14.30	1.16
01 Jan 00	0920	23526	88.013	16.28	1.37
01 Jan 00	0930	23535	88.015	18.45	1.60
01 Jan 00	0940	23546	88.018	20.80	1.87
01 Jan 00	0950	23558	88.021	23.35	2.16
01 Jan 00	1000	23571	88.024	26.10	2.49
01 Jan 00	1010	23586	88.027	29.07	2.86
01 Jan 00	1020	23603	88.031	32.25	3.27
01 Jan 00	1030	23621	88.035	35.65	3.72
01 Jan 00	1040	23641	88.040	39.29	4.21
01 Jan 00	1050	23663 .	88.045	43.18	4.76
01 Jan 00	1100	23687	88.051	47.32	5.35
01 Jan 00	1110	23714	88.057	51.74	6.00
01 Jan 00	1120	23742	88.064	56.43	6.70
01 Jan 00	1130	23773	88.071	61.43	7.47
01 Jan 00	1140	23807	88.079	66.77	8.30
01 Jan 00	1150	23844	88.087	72.47	9.20
01 Jan 00	1200	23883	88.097	78.59	10.17
01 Jan 00	1210	23926	88.107	85.22	11.22
01 Jan 00	1220	23972	88.117	92.41	12.36
01 Jan 00	1230	24022	88.129	100.26	13.59
01 Jan 00	1240	24076	88.142	109.08	14.92
01 Jan 00	1250	24135	88.156	119.07	16.38
01 Jan 00	1300	24200	88.171	130.70	17.97
01 Jan 00	1310	24272	88.187	146.03	19.73
01 Jan 00	1320	24352	88.206	163.39	21.71
01 Jan 00	1330	24443	88.227	183.55	23.94
01 Jan 00	1340	24545	88.251	207.85	26.45
01 Jan 00	1350	24661	88.278	234.27	29.31
01 Jan 00	1400	24791	88.309	263.33	32.52
01 Jan 00	1410	24938	88.343	295.11	36.14
01 Jan 00	1420	25103	88.382	328.94	40.19
01 Jan 00	1430	25286	88.425	365.96	44.69
01 Jan 00	1440	25489	88.472	405.79	49.69
01 Jan 00	1450	25714	88.525	447.75	55.22
01 Jan 00	1500	25961	88.582	493.52	61.31
01 Jan 00	1510	26233	88.646	541.50	68.00
01 Jan 00	1520	26529	88.715	590.95	75.30
01 Jan 00	1530	26852	88.791	642.81	83.24
01 Jan 00	1540	27201	88.872	694.80	91.82
01 Jan 00	1550	27575	88.959	745.76	102.59
01 Jan 00	1600	27968	89.039	793.63	127.07
01 Jan 00	1610	28374	89.123	839.48	152.37
01 Jan 00	1620	28791	89.209	881.70	178.36
01 Jan 00	1630	29216	89.295	919.09	205.15
01 Jan 00	1640	29646	89.381	953.38	233.56
01 Jan 00	1650	30078	89.466	982.71	262.10
01 Jan 00	1700	30509	89.552	1007.33	290.58
01 Jan 00	1710	30937	89.635	1028.49	321.01
01 Jan 00	1720	31357	89.715	1044.11	352.00
01 Jan 00	1730	31766	89.794 Page 2	1055.82	382.23

Date Time	Time	Reservoir Storage	Reservoir Elevation	Inflow (cms)	Outflow (cms)	
	(K cu m)	(m)	(Citis)	(camb)		
01 Jan 00	1740	32164	89.869	1064.52	411.73	
01 Jan 00	1750	32549	89.941	1069.23	440.42	
01 Jan 00	1800	32918	90.010	1071.02	468.00	
01 Jan 00	1810	33272	90.076	1069.46	494.38	
01 Jan 00	1820	33607	90.137	1062.38	520.53	
01 Jan 00	1830	33921	90.194	1052.84	545.41	
01 Jan 00	1840	34215	90.248	1040.85	568.65	
01 Jan 00	1850	34488	90.297	1026.59	590.19	
01 Jan 00	1900	34739	90.343	1010.61	610.73	
01 Jan 00	1910	34968	90.383	992.65	630.08	
01 Jan 00	1920	35174	90.420	972.82	647.54	
01 Jan 00	1930	35358	90.453	951.41	663.11	
01 Jan 00	1940	35520	90.481	927.65	676.80	
01 Jan 00	1950	35659	90.506	902.12	688.58	
01 Jan 00	2000	35776	90.527	875.26	698.49	
01 Jan 00	2010	35871	90.543	846.47	706.40	
01 Jan 00	2020	35945	90.556	816.96	712.47	
01 Jan 00	2030	35997	90,565	787.44	716.83	
01 Jan 00	2040	36030	90.571	759.44	719.57	
01 Jan 00	2050	36046	90.574	732.04	720.84	
01 Jan 00	2100	36044	90.574	705.93	720.75	
01 Jan 00	2110	36029	90.571	682.04	719.45	
01 Jan 00	2120	36000	90.566	658.94	717.08	
01 Jan 00	2130	35960	90.559	636.86	713.72	
01 Jan 00	2140	35908	90.550	615.75	709.48	
01 Jan 00	2150	35848	90.539	595.29	704.44	
01 Jan 00	2200	35778	90.527	575.86	698.65	
01 Jan 00	2210	35701	90.513	557.27	692.11	
01 Jan 00	2220	35617	90.498	539.35	684.99	
01 Jan 00	2230	35526	90.482	522.70	677.37	
01 Jan 00	2240	35431	90.466	506.70	669.32	
01 Jan 00	2250	35332	90.448	491.13	660.88	
01 Jan 00	2300	35228	90.429	475.95	652.10	
01 Jan 00	2310	35120	90.410	461.11	643.01	
01 Jan 00	2320	35010	90.391	446.75	633.65	
01 Jan 00	2330	34896	90.371	433.09	624.06	
01 Jan 00	2340	34781	90.350	419.76	614.28	
01 Jan 00	2350	34663	90.329	406.79	604.33	
01 Jan 00	2400	34544	90.308	394.17	594.61	
02 Jan 00	0010	34423	90.286	381.95	585.04	
02 Jan 00	0020	34300	90.263	370.53	575.36	
02 Jan 00	0030	34177	90.241	359.80	565.62	
02 Jan 00	0040	34053	90.218	349.43	555.85	
02 Jan 00	0050	33930	90.196	339.40	546.05	
02 Jan 00	0100	33806	90.173	329.68	536.25	
02 Jan 00	0110	33682	90.151	320.26	526.46	
02 Jan 00	0120	33558	90.128	311.42	516.70	
02 Jan 00	0130	33435	90.106	302.84	506.99	
02 Jan 00	0130		90.084	294.45	497.49	
02 Jan 00		33313				
	0150	33192	90.061 90.038	286.23 278.19	488.41 479.38	
02 Jan 00	0200	33071				
02 Jan 00	0210	32950	90.016	270.40	470.40	
02 Jan 00	0220	32831	89.994	262.94	461.48	
02 Jan 00	0230	32712	89.972	255.60	452.62	

Date	Time	Reservoir	Reservoir	Inflow	Outflow	
		Storage (K cu m)	Elevation	(cms)	(cms)	
		(R Cu III)	(m)			
02 Jan 00	0250	32478	89.928	241.19	435.12	
02 Jan 00	0300	32362	89.906	234.09	426.47	
02 Jan 00	0310	32247	89.885	227.17	417.89	
02 Jan 00	0320	32133	89.863	220.35	409.39	
02 Jan 00	0330	32020	89.842	213.49	400.96	
02 Jan 00	0340	31908	89.821	206.59	392.68	
02 Jan 00	0350	31797	89.800	199.65	384.47	
02 Jan 00	0400	31686	89.778	192.70	376.31	
02 Jan 00	0410	31576	89.757	185.86	368.21	
02 Jan 00	0420	31467	89.736	179.01	360.16	
02 Jan 00	0430	31359	89.716	172.18	352.16	
02 Jan 00	0440	31251	89.695	165.36	344.22	
02 Jan 00	0450	31144	89.674	158.59	336.32	
02 Jan 00	0500	31038	89.654	151.95	328.48	
02 Jan 00	0510	30932	89.634	145.43	320.69	
02 Jan 00	0520	30828	89.614	139.01	312.96	
02 Jan 00	0530	30724	89.594	132.72	305.29	
02 Jan 00	0540	30620	89.574	126.53	297.92	
02 Jan 00	0550	30518	89.553	120.48	291.14	
02 Jan 00	0600	30416	89.533	114.61	284.39	
02 Jan 00	0610	30314	89.513	108.89	277.68	
02 Jan 00	0620	30213	89.493	103.35	271.02	
02 Jan 00	0630	30113	89.473	97.99	264.40	
02 Jan 00	0640	30014	89.453	92.81	257.83	
02 Jan 00	0650	29915	89.434	87.84	251.32	
02 Jan 00	0700	29817	89.415	83.10	244.88	
02 Jan 00	0710	29721	89.396	78.54	238.50	
02 Jan 00	0720	29626	89.377	74.17	232.20	
02 Jan 00	0730	29531	89.358	69.98	225.98	
02 Jan 00	0740	29438	89.340	65.99	219.84	
02 Jan 00	0750	29347	89.321	62.22	213.79	
02 Jan 00	0800	29257	89.303	58.68	207.83	
02 Jan 00	0810	29168	89.286	55,34	201.97	
02 Jan 00	0820	29081	89.268	52.21	196.42	
02 Jan 00	0830	28995	89.251	49.27	191.07	
02 Jan 00	0840	28910	89.233	46.50	185.82	
02 Jan 00	0850	28828	89.216	43.89	180.66	
02 Jan 00	0900	28746	89.199	41.43	175.59	
02 Jan 00	0910	28667	89.183	39.10	170.63	
02 Jan 00	0920	28588	89.167	36.88	165.76	
02 Jan 00	0930	28512	89.151	34.78	160.99	
02 Jan 00	0940	28437	89.136	32.77	156.32	
02 Jan 00	0950	28364	89.121	30.87	151.75	
02 Jan 00	1000	28292	89.106	29.06	147.29	
02 Jan 00	1010	28222	89.092	27.35	142.92	
02 Jan 00	1020	28153	89.078	25.73	138.64	
02 Jan 00	1030	28086	89.064	24.18	134.47	
02 Jan 00	1040	28021	89.050	22.70	130.40	
02 Jan 00	1050	27957	89.037	21.29	126.42	
02 Jan 00	1100	27895	89.024	19.94	122.54	
02 Jan 00	1110	27834	89.012	18.65	118.75	
02 Jan 00	1120	27775	89.000	17.42	115.05	
02 Jan 00	1130	27717	88.988	16.25	111.45	
02 Jan 00					107.93	
02 3GH 00	1140	27660	88.976	15.14	101.73	

Date	Time	Reservoir	Reservoir	Inflow	Outflow	
		Storage (K cu m)	Elevation (m)	(cms)	(cms)	
02 Jan 00	1200	27552	88.954	13.08	101 17	
02 Jan 00 02 Jan 00		27552			101.17	
	1210	27499	88.942	12.15	99.17	
02 Jan 00	1220	27447	88.930	11.28	97.89	
02 Jan 00	1230	27395	88.918	10.51	96.61	
02 Jan 00	1240	27344	88.906	9.82	95.35	
02 Jan 00	1250	27293	88.894	9.19	94.09	
02 Jan 00	1300	27242	88.882	8.61	92.84	
02 Jan 00	1310	27192	88.870	8.07	91.60	
02 Jan 00	1320	27142	88.859	7.57	90.37	
02 Jan 00	1330	27092	88.847	7.10	89.15	
02 Jan 00	1340	27043	88.836	6.66	87.95	
02 Jan 00	1350	26995	88.824	6.24	86.75	
02 Jan 00	1400	26947	88.813	5.85	85.57	
02 Jan 00	1410	26899	88.802	5.49	84.40	
02 Jan 00	1420	26852	88.791	5.15	83.24	
02 Jan 00	1430	26805	88.780	4.83	82.09	
02 Jan 00	1440	26759	88.769	4.53	80.96	
02 Jan 00	1450	26714	88.758	4.25	79.84	
02 Jan 00	1500	26669	88.748	3.98	78.73	
02 Jan 00	1510	26624	88.737	3.74	77.63	
02 Jan 00	1520	26580	88.727	3.50	76.54	
02 Jan 00	1530	26536	88.717	3.28	75.47	
02 Jan 00	1540	26493	88.707	3.07	74.41	
02 Jan 00	1550	26451	88.697	2.88	73.36	
02 Jan 00	1600	26409	88.687	2.70	72.33	
02 Jan 00	1610	26367	88.677	2.52	71.31	
02 Jan 00	1620	26326	88.668	2.36	70.30	
02 Jan 00			88.658	2.21	69.30	
	1630	26286				
02 Jan 00	1640	26246	88.649	2.06	68.32	
02 Jan 00	1650	26206	88.640	1.93	67.34	
02 Jan 00	1700	26167	88.631	1.80	66.38	
02 Jan 00	1710	26129	88.622	1.68	65.44	
02 Jan 00	1720	26091	88.613	1.57	64.50	
02 Jan 00	1730	26053	88.604	1.47	63.58	
02 Jan 00	1740	26016	88.595	1.37	62.67	
02 Jan 00	1750	25980	88.587	1.27	61.77	
02 Jan 00	1800	25944	88.578	1.19	60.88	
02 Jan 00	1810	25908	88.570	1.11	60.00	
02 Jan 00	1820	25873	88.562	1.03	59.14	
02 Jan 00	1830	25838	88.554	0.96	58.29	
02 Jan 00	1840	25804	88.546	0.89	57.45	
02 Jan 00	1850	25770	88.538	0.83	56.62	
02 Jan 00	1900	25737	88.530	0.77	55.80	
02 Jan 00	1910	25704	88.522	0.72	54.99	
02 Jan 00	1920	25672	88.515	0.66	54.20	
02 Jan 00	1930	25640	88.507	0.61	53.41	
02 Jan 00	1940	25609	88.500	0.57	52.64	
02 Jan 00	1950	25578	88.493	0.52	51.87	
	2000	25547	88.486	0.48	51.12	
02 Jan 00						
02 Jan 00	2010	25517	88.479	0.44	50.38	
02 Jan 00	2020	25487	88.472	0.40	49.65	
02 Jan 00	2030	25458	88.465	0.37	48.92	
02 Jan 00	2040	25429	88.458	0.33	48.21	
02 Jan 00	2050	25400	88.451	0.30	47.51	
02 Jan 00	2100	25372	88.445 Page: 5	0.27	46.82	

Date	Time	Reservoir	Pogonyoin	- (1		
		Reservoir Storage	Reservoir Elevation	Inflow (cms)	Outflow	
					(cms)	
	(K cu m)	(m)				
02 Jan 00	2110	25344	88.438	0.24	46.13	
02 Jan 00	2120	25317	88.432	0.22	45.46	
02 Jan 00	2130	25290	88.426	0.19	44.80	
02 Jan 00	2140	25264	88.419	0.17	44.14	
02 Jan 00	2150	25237	88.413	0.15	43.50	
02 Jan 00	2200	-25212	88.407	0.13	42.86	
02 Jan 00	2210	25186	88.401	0.11	42.24	
02 Jan 00	2220	25161	88.395	0.09	41.62	
02 Jan 00	2230	25136	88.390	0.08	41.01	
02 Jan 00	2240	25112	88.384	0.06	40.41	
02 Jan 00	2250	25088	88.378	0.05	39.82	
02 Jan 00	2300	25064	88.373	0.04	39.24	
02 Jan 00	2310	25041	88.367	0.03	38.66	
02 Jan 00	2320	25018	88.362	0.02	38.09	
02 Jan 00	2330	24995	88.357	0.02	37.54	
02 Jan 00	2340	24973	88.351	0.01	36.99	
02 Jan 00	2350	24951	88.346	0.01	36.44	
02 Jan 00	2400	24929	88.341	0.00	35.91	
03 Jan 00	0010	24908	88.336	0.00	35.38	
03 Jan 00	0020	24887	88.331	0.00	34.87	
03 Jan 00	0030	24866	88.326	0.00	34.35	
03 Jan 00	0040	24845	88.322	0.00	33.85	
03 Jan 00	0050	24825	88.317	0.00	33.35	
03 Jan 00	0100	24805	88.312	0.00	32.87	
03 Jan 00	0110	24786	88.308	0.00	32.38	
03 Jan 00	0120	24766	88.303	0.00	31.91	
03 Jan 00	0130	24747	88.299	0.00	31.44	
03 Jan 00	0140	24729	88.294	0.00	30.98	
03 Jan 00	0150	24710	88.290	0.00	30.53	
03 Jan 00	0200	24692	88.286	0.00	30.08	
03 Jan 00	0210	24674	88.282	0.00	29.64	
03 Jan 00	0220	24657	88.277	0.00	29.20	
03 Jan 00	0230	24639	88.273	0.00	28.78	
03 Jan 00	0240	24622	88.269	0.00	28.35	
03 Jan 00	0250	24605	88.265	0.00	27.94	

